Ergodic decomposition of flows on homogeneous spaces of finite volume
Sbornik. Mathematics, Tome 68 (1991) no. 2, pp. 483-502

Voir la notice de l'article provenant de la source Math-Net.Ru

The reduction of the theory of flows on homogeneous spaces of finite volume to the ergodic case is studied in full scope. Bibliography: 20 titles.
@article{SM_1991_68_2_a8,
     author = {A. N. Starkov},
     title = {Ergodic decomposition of flows on homogeneous spaces of finite volume},
     journal = {Sbornik. Mathematics},
     pages = {483--502},
     publisher = {mathdoc},
     volume = {68},
     number = {2},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_68_2_a8/}
}
TY  - JOUR
AU  - A. N. Starkov
TI  - Ergodic decomposition of flows on homogeneous spaces of finite volume
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 483
EP  - 502
VL  - 68
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1991_68_2_a8/
LA  - en
ID  - SM_1991_68_2_a8
ER  - 
%0 Journal Article
%A A. N. Starkov
%T Ergodic decomposition of flows on homogeneous spaces of finite volume
%J Sbornik. Mathematics
%D 1991
%P 483-502
%V 68
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1991_68_2_a8/
%G en
%F SM_1991_68_2_a8
A. N. Starkov. Ergodic decomposition of flows on homogeneous spaces of finite volume. Sbornik. Mathematics, Tome 68 (1991) no. 2, pp. 483-502. http://geodesic.mathdoc.fr/item/SM_1991_68_2_a8/