A~precise estimate of the rate of convergence in the Central Limit Theorem in Hilbert~space
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 68 (1991) no. 2, pp. 453-482
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let 
$$
S_n=n^{-1/2}\sigma^{-1}\sum_1^n(X_i-\mathbf EX_i),\quad\sigma^2=\mathbf E|X_1-\mathbf EX_1|^2,
$$
be the normed sum of independent identically distributed random variables $X_i$ with values in a separable Hilbert space $H$. Denote by $V$ the covariance operator of $X$, and let $Y$ be an $H$-valued $(0,\sigma^{-2}V)$ Gaussian random variable. The authors prove that there exist an absolute constant  such that for any $a\in H$ and $r\geqslant0$
$$
|\mathbf P(|S_n-a|)-\mathbf P(|Y-a|)|\leqslant c\biggl(\prod_1^6\sigma_i^{-1}\biggr)\sigma^3\mathbf E|X_1-\mathbf EX_1|^3(1+|a|^3)n^{-1/2},
$$
where $\sigma_1^2\geqslant\sigma_2^2\geqslant\dotsb$ are the eigenvalues of $V$. Up to the value of $c$, this estimate is unimprovable in general.
Bibliography: 15 titles.
			
            
            
            
          
        
      @article{SM_1991_68_2_a7,
     author = {B. A. Zalesskii and V. V. Sazonov and V. V. Ulyanov},
     title = {A~precise estimate of the rate of convergence in the {Central} {Limit} {Theorem} in {Hilbert~space}},
     journal = {Sbornik. Mathematics},
     pages = {453--482},
     publisher = {mathdoc},
     volume = {68},
     number = {2},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_68_2_a7/}
}
                      
                      
                    TY - JOUR AU - B. A. Zalesskii AU - V. V. Sazonov AU - V. V. Ulyanov TI - A~precise estimate of the rate of convergence in the Central Limit Theorem in Hilbert~space JO - Sbornik. Mathematics PY - 1991 SP - 453 EP - 482 VL - 68 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1991_68_2_a7/ LA - en ID - SM_1991_68_2_a7 ER -
%0 Journal Article %A B. A. Zalesskii %A V. V. Sazonov %A V. V. Ulyanov %T A~precise estimate of the rate of convergence in the Central Limit Theorem in Hilbert~space %J Sbornik. Mathematics %D 1991 %P 453-482 %V 68 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1991_68_2_a7/ %G en %F SM_1991_68_2_a7
B. A. Zalesskii; V. V. Sazonov; V. V. Ulyanov. A~precise estimate of the rate of convergence in the Central Limit Theorem in Hilbert~space. Sbornik. Mathematics, Tome 68 (1991) no. 2, pp. 453-482. http://geodesic.mathdoc.fr/item/SM_1991_68_2_a7/
