A precise estimate of the rate of convergence in the Central Limit Theorem in Hilbert space
Sbornik. Mathematics, Tome 68 (1991) no. 2, pp. 453-482 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $$ S_n=n^{-1/2}\sigma^{-1}\sum_1^n(X_i-\mathbf EX_i),\quad\sigma^2=\mathbf E|X_1-\mathbf EX_1|^2, $$ be the normed sum of independent identically distributed random variables $X_i$ with values in a separable Hilbert space $H$. Denote by $V$ the covariance operator of $X$, and let $Y$ be an $H$-valued $(0,\sigma^{-2}V)$ Gaussian random variable. The authors prove that there exist an absolute constant such that for any $a\in H$ and $r\geqslant0$ $$ |\mathbf P(|S_n-a|<r)-\mathbf P(|Y-a|<r)|\leqslant c\biggl(\prod_1^6\sigma_i^{-1}\biggr)\sigma^3\mathbf E|X_1-\mathbf EX_1|^3(1+|a|^3)n^{-1/2}, $$ where $\sigma_1^2\geqslant\sigma_2^2\geqslant\dotsb$ are the eigenvalues of $V$. Up to the value of $c$, this estimate is unimprovable in general. Bibliography: 15 titles.
@article{SM_1991_68_2_a7,
     author = {B. A. Zalesskii and V. V. Sazonov and V. V. Ulyanov},
     title = {A~precise estimate of the rate of convergence in the {Central} {Limit} {Theorem} in {Hilbert~space}},
     journal = {Sbornik. Mathematics},
     pages = {453--482},
     year = {1991},
     volume = {68},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_68_2_a7/}
}
TY  - JOUR
AU  - B. A. Zalesskii
AU  - V. V. Sazonov
AU  - V. V. Ulyanov
TI  - A precise estimate of the rate of convergence in the Central Limit Theorem in Hilbert space
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 453
EP  - 482
VL  - 68
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1991_68_2_a7/
LA  - en
ID  - SM_1991_68_2_a7
ER  - 
%0 Journal Article
%A B. A. Zalesskii
%A V. V. Sazonov
%A V. V. Ulyanov
%T A precise estimate of the rate of convergence in the Central Limit Theorem in Hilbert space
%J Sbornik. Mathematics
%D 1991
%P 453-482
%V 68
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1991_68_2_a7/
%G en
%F SM_1991_68_2_a7
B. A. Zalesskii; V. V. Sazonov; V. V. Ulyanov. A precise estimate of the rate of convergence in the Central Limit Theorem in Hilbert space. Sbornik. Mathematics, Tome 68 (1991) no. 2, pp. 453-482. http://geodesic.mathdoc.fr/item/SM_1991_68_2_a7/

[1] Gotze F., “Asymptotic expansions for bivariate von Mises functionals”, Z. Wahrscheinlichkeitstheor.Verw. Geb., 50 (1979), 333–355 | DOI | MR

[2] Yurinskii V. V., “O tochnosti normalnogo priblizheniya veroyatnosti popadaniya v shar”, Teoriya veroyatnostei i ee primeneniya, 27:2 (1982), 270–278 | MR | Zbl

[3] Nagaev S. V., “On accuracy of normal approximation for distribution of sum of independent Hilbert space valued random variables”, Lect. Notes Math., 1021, Springer-Verlag, Berlin, 1983, 461–473 | MR

[4] Nagaev S. V., “Otsenka tipa Berri–Esseena dlya summ sluchainykh velichin so znacheniyami v gilbertovom prostranstve”, DAN SSSR, 303:1 (1988), 37 | MR

[5] Sazonov V. V., Ulyanov V. V., Zalesskii B. A., “On normal approximation in Hilbert space”, Probability Theory and Mathematical Statistics, Proceedings Fourth Vilnius Conference (Vilnius 1985), VNU Science Press, Utrecht, 1987, 561–580 | MR

[6] Zalesskii B. A., Sazonov V. V., Ulyanov V. V., “Normalnaya approksimatsiya v gilbertovom prostranstve. I, II”, Teoriya veroyatnostei i ee primeneniya, 33:2 (1988), 225–245 ; 3, 508–521 | MR | MR

[7] Senatov V. V., “O zavisimosti otsenok skorosti skhodimosti v tsentralnoi predelnoi teoreme ot kovariatsionnogo operatora slagaemykh”, Teoriya veroyatnostei i ee primeneniya, 30:2 (1985), 354–357 | MR | Zbl

[8] Senatov V. V., “Chetyre primera nizhnikh otsenok v mnogomernoi tsentralnoi predelnoi teoreme”, Teoriya veroyatnostei i ee primeneniya, 30:4 (1985), 750–758 | MR | Zbl

[9] Zalesskii B. A., Sazonov V. V., Ulyanov V. V., “Pravilnaya otsenka tochnosti normalnogo priblizheniya v gilbertovom prostranstve”, Teoriya veroyatnostei i ee primeneniya, 33:4 (1988), 753–754 | MR

[10] Sazonov V. V., Ulyanov V. V., Zalesskii B. A., “Asymptotically precise estimate of the accuracy of Gaussian approximation in Hilbert space”, J. Multivariate. Anal., 28:2 (1989), 304–330 | DOI | MR | Zbl

[11] Sazonov V. V., “Normalnaya approksimatsiya v konechnomernykh i gilbertovykh prostranstvakh”, Tr. MIAN, 182 (1988), 57–67 | MR | Zbl

[12] Sazonov V. V., Normal approximation – Some recent advances, Lect. Notes Math., 879, Springer Verlag, Berlin, 1981 | MR | Zbl

[13] Pinelis I. F., “Otsenki momentov beskonechnomernykh martingalov”, Matem. zametki, 27:6 (1980), 953–958 | MR | Zbl

[14] Petrov V. V., Predelnye teoremy dlya summ nezavisimykh sluchainykh velichin, Nauka, M., 1987 | MR

[15] Nagaev S. V., “O skorosti skhodimosti k normalnomu zakonu v gilbertovom prostranstve”, Teoriya veroyatnostei i ee primeneniya, 30:1 (1985), 19–32 | MR | Zbl