A~precise estimate of the rate of convergence in the Central Limit Theorem in Hilbert~space
Sbornik. Mathematics, Tome 68 (1991) no. 2, pp. 453-482

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $$ S_n=n^{-1/2}\sigma^{-1}\sum_1^n(X_i-\mathbf EX_i),\quad\sigma^2=\mathbf E|X_1-\mathbf EX_1|^2, $$ be the normed sum of independent identically distributed random variables $X_i$ with values in a separable Hilbert space $H$. Denote by $V$ the covariance operator of $X$, and let $Y$ be an $H$-valued $(0,\sigma^{-2}V)$ Gaussian random variable. The authors prove that there exist an absolute constant such that for any $a\in H$ and $r\geqslant0$ $$ |\mathbf P(|S_n-a|)-\mathbf P(|Y-a|)|\leqslant c\biggl(\prod_1^6\sigma_i^{-1}\biggr)\sigma^3\mathbf E|X_1-\mathbf EX_1|^3(1+|a|^3)n^{-1/2}, $$ where $\sigma_1^2\geqslant\sigma_2^2\geqslant\dotsb$ are the eigenvalues of $V$. Up to the value of $c$, this estimate is unimprovable in general. Bibliography: 15 titles.
@article{SM_1991_68_2_a7,
     author = {B. A. Zalesskii and V. V. Sazonov and V. V. Ulyanov},
     title = {A~precise estimate of the rate of convergence in the {Central} {Limit} {Theorem} in {Hilbert~space}},
     journal = {Sbornik. Mathematics},
     pages = {453--482},
     publisher = {mathdoc},
     volume = {68},
     number = {2},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_68_2_a7/}
}
TY  - JOUR
AU  - B. A. Zalesskii
AU  - V. V. Sazonov
AU  - V. V. Ulyanov
TI  - A~precise estimate of the rate of convergence in the Central Limit Theorem in Hilbert~space
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 453
EP  - 482
VL  - 68
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1991_68_2_a7/
LA  - en
ID  - SM_1991_68_2_a7
ER  - 
%0 Journal Article
%A B. A. Zalesskii
%A V. V. Sazonov
%A V. V. Ulyanov
%T A~precise estimate of the rate of convergence in the Central Limit Theorem in Hilbert~space
%J Sbornik. Mathematics
%D 1991
%P 453-482
%V 68
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1991_68_2_a7/
%G en
%F SM_1991_68_2_a7
B. A. Zalesskii; V. V. Sazonov; V. V. Ulyanov. A~precise estimate of the rate of convergence in the Central Limit Theorem in Hilbert~space. Sbornik. Mathematics, Tome 68 (1991) no. 2, pp. 453-482. http://geodesic.mathdoc.fr/item/SM_1991_68_2_a7/