Orientability of bundles: obstruction theory and applications to $K$-theory
Sbornik. Mathematics, Tome 68 (1991) no. 2, pp. 429-451

Voir la notice de l'article provenant de la source Math-Net.Ru

An obstruction theory is constructed for orientability of vector, piecewise-linear, and topological $\mathbf R^n$-bundles and homotopy sphere bundles (spherical fibrations) in generalized cohomology theories. The results are applied to study the orientability of bundles in complex $K$-theory. In particular, it turns out that the problem of $K$-orientability for each of the four classes of bundles mentioned above is to be solved differently. Bibliography: 20 titles
@article{SM_1991_68_2_a6,
     author = {Yu. B. Rudyak},
     title = {Orientability of bundles: obstruction theory and applications to $K$-theory},
     journal = {Sbornik. Mathematics},
     pages = {429--451},
     publisher = {mathdoc},
     volume = {68},
     number = {2},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_68_2_a6/}
}
TY  - JOUR
AU  - Yu. B. Rudyak
TI  - Orientability of bundles: obstruction theory and applications to $K$-theory
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 429
EP  - 451
VL  - 68
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1991_68_2_a6/
LA  - en
ID  - SM_1991_68_2_a6
ER  - 
%0 Journal Article
%A Yu. B. Rudyak
%T Orientability of bundles: obstruction theory and applications to $K$-theory
%J Sbornik. Mathematics
%D 1991
%P 429-451
%V 68
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1991_68_2_a6/
%G en
%F SM_1991_68_2_a6
Yu. B. Rudyak. Orientability of bundles: obstruction theory and applications to $K$-theory. Sbornik. Mathematics, Tome 68 (1991) no. 2, pp. 429-451. http://geodesic.mathdoc.fr/item/SM_1991_68_2_a6/