Orientability of bundles: obstruction theory and applications to $K$-theory
Sbornik. Mathematics, Tome 68 (1991) no. 2, pp. 429-451 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An obstruction theory is constructed for orientability of vector, piecewise-linear, and topological $\mathbf R^n$-bundles and homotopy sphere bundles (spherical fibrations) in generalized cohomology theories. The results are applied to study the orientability of bundles in complex $K$-theory. In particular, it turns out that the problem of $K$-orientability for each of the four classes of bundles mentioned above is to be solved differently. Bibliography: 20 titles
@article{SM_1991_68_2_a6,
     author = {Yu. B. Rudyak},
     title = {Orientability of bundles: obstruction theory and applications to $K$-theory},
     journal = {Sbornik. Mathematics},
     pages = {429--451},
     year = {1991},
     volume = {68},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_68_2_a6/}
}
TY  - JOUR
AU  - Yu. B. Rudyak
TI  - Orientability of bundles: obstruction theory and applications to $K$-theory
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 429
EP  - 451
VL  - 68
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1991_68_2_a6/
LA  - en
ID  - SM_1991_68_2_a6
ER  - 
%0 Journal Article
%A Yu. B. Rudyak
%T Orientability of bundles: obstruction theory and applications to $K$-theory
%J Sbornik. Mathematics
%D 1991
%P 429-451
%V 68
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1991_68_2_a6/
%G en
%F SM_1991_68_2_a6
Yu. B. Rudyak. Orientability of bundles: obstruction theory and applications to $K$-theory. Sbornik. Mathematics, Tome 68 (1991) no. 2, pp. 429-451. http://geodesic.mathdoc.fr/item/SM_1991_68_2_a6/

[1] Pazhitnov A. V., Rudyak Yu. B., O gomotopicheskom tipe vysshikh $k$-teorii Moravy, Preprint in-ta matematiki, SO AN SSSR, Novosibirsk, 1981

[2] Rudyak Yu. B., “Gomotopicheskie svoistva vysshikh $k$-teorii Moravy”, Tez. dokl. Leningr. Mezhdunar. topologicheskoi konferentsii, Nauka, L., 1982, 137

[3] Rudyak Yu. B., Khokhlov A. V., “Vysshie kogomologicheskie operatsii na klassakh Toma”, Vesti. MGU. Ser. 1. Matematika. Mekhanika, 1984, no. 6, 26–31 | MR | Zbl

[4] Khokhlov A. V., “$k\langle n\rangle$-teorii bordizmov s osobennostyami i $\langle n\rangle$-orientiruemost rassloenii”, Matem. sb., 165 (1984), 258–267 | MR

[5] Pazhitnov A. V., “Teoremy edinstvennosti dlya obobschennykh teorii kogomologii”, Izv. AN SSSR. Ser. matem., 47:3 (1983), 518–543 | MR | Zbl

[6] Rudyak Yu. B., “Ob orientiruemosti sfericheskikh, topologicheskikh i kusochno-lineinykh rassloenii v kompleksnoi $K$-teorii”, DAN SSSR, 298:6 (1988), 1338–1341 | MR

[7] Hohlov A. V., Pazhitnov A. V., Rudyak Yu. B., “On the homotopy properties of Morava extraordinary $k$-theories”, Lect. Notes in Math., 1060 (1984), 151–166 | DOI | MR

[8] Atiyah M. F., Bott R., Shapiro A., “Clifford modules”, Topology, 1964, no. 3, Suppl. 1. 3–38 | MR | Zbl

[9] Svittser R. M., Algebraicheskaya topologiya. Gomotopii i gomologii, Nauka, M., 1985 | MR

[10] Kuiper N. H., Lashof R., “Microbundles and bundles. I. Elementary theory”, Invent. Math., 1 (1966), 1–17 | DOI | MR | Zbl

[11] Kister J. M., “Microbundles and fibre bundles”, Ann. Math., 80 (1964), 190–199 | DOI | MR | Zbl

[12] May J. P., “$E_\infty$-ring spaces and $E_\infty$-ring spectra”, Lect. Notes in Math., 577 (1977) | MR | Zbl

[13] Adams J. F., “On Chorn charasters and structure of the unitary group”, Proc. Camb. Phill. Soc., 57 (1961), 189–199 | DOI | MR | Zbl

[14] Hegenbarth F., “Secondary cohomology operations applied to the Thorn class”, Lect. Notes in Math., 778 (1980), 442 | DOI | MR

[15] Heil A., “On exotic characteristic classes for spherical fibrations”, Topology and Appl., 21 (1985), 269–286 | DOI | MR | Zbl

[16] Madsen I., “Higher torsion in SG and BSG”, Math. Z., 143 (1975), 55–80 | DOI | MR | Zbl

[17] Madsen I., Milgrem R., Klassifitsiruyuschie prostranstva dlya perestroek i kobordizmov mnogoobrazii, Mir, M., 1984 | MR

[18] Bukhshtaber V. M., Mischenko A. S., “$K$-teoriya na kategorii beskonechnykh kletochnykh kompleksov”, Izv. AN SSSR. Ser. matem., 32 (1968), 560–604

[19] Rudyak Yu. B., “Kusochno lineinye struktury na topologicheskikh mnogoobraziyakh”, Dobavlenie k kn.: I. Madsen, R. Milgrem, Klassifitsiruyuschie prostranstva dlya perestroek i kobordizmov mnogoobrazii, Mir, M., 1984, 243–266 | MR

[20] Stong R., Zametki po teorii kobordizmov, Mir, M., 1980