On the use of graphs for computing a basis, growth and Hilbert series of associative algebras
Sbornik. Mathematics, Tome 68 (1991) no. 2, pp. 417-428 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Certain graphs are considered that can be assigned to an associative algebra and for which there exists a bijective correspondence between paths in the graph and the basis of the algebra. Algorithms for computing the growth and the Hilbert series of the algebra with the use of its graph are indicated. A class of algebras, called automaton algebras, is introduced, for which the rationality of the Hilbert series and the alternativity of the growth are proved. It is shown that commutative algebras, algebras defined by two quadratic relations, algebras defined by the commutativity condition of some generators, and algebras with a finite Gröbner basis are all automaton algebras. Bibliography: 14 titles
@article{SM_1991_68_2_a5,
     author = {V. A. Ufnarovskii},
     title = {On the use of graphs for computing a basis, growth and {Hilbert} series of associative algebras},
     journal = {Sbornik. Mathematics},
     pages = {417--428},
     year = {1991},
     volume = {68},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_68_2_a5/}
}
TY  - JOUR
AU  - V. A. Ufnarovskii
TI  - On the use of graphs for computing a basis, growth and Hilbert series of associative algebras
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 417
EP  - 428
VL  - 68
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1991_68_2_a5/
LA  - en
ID  - SM_1991_68_2_a5
ER  - 
%0 Journal Article
%A V. A. Ufnarovskii
%T On the use of graphs for computing a basis, growth and Hilbert series of associative algebras
%J Sbornik. Mathematics
%D 1991
%P 417-428
%V 68
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1991_68_2_a5/
%G en
%F SM_1991_68_2_a5
V. A. Ufnarovskii. On the use of graphs for computing a basis, growth and Hilbert series of associative algebras. Sbornik. Mathematics, Tome 68 (1991) no. 2, pp. 417-428. http://geodesic.mathdoc.fr/item/SM_1991_68_2_a5/

[1] Anick D. J., “On the homology of associative algebras”, Trans. A. M. S., 291 (1985), 291–310 | DOI | MR | Zbl

[2] Anick D., “On the homology of associative algebras”, Trans. A. M. S., 296 (1986), 641–659 | DOI | MR | Zbl

[3] Bergman G., “The diamond lemma for ring theory”, Adv. in Math., 29 (1978), 178–218 | DOI | MR | Zbl

[4] Bokut L. A., Lvov I. V., Kharchenko V. K., Nekommutativnye koltsa, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 18, VINITI, M., 1988

[5] Govorov V. E., “O graduirovannykh algebrakh”, Matem. zametki, 12 (1972), 197–204 | MR | Zbl

[6] Govorov V. E., “O razmernosti graduirovannykh algebr”, Matem. zametki, 14 (1973), 209–216 | MR | Zbl

[7] Okninski J., “On monomial algebras”, Arch. Math., 49 (1987), 1–7 | DOI | MR

[8] Salomaa A., Zhemchuzhiny teorii formalnykh yazykov, Mir, M., 1986 | MR

[9] Ufnarovskii V. A., “O ryadakh Puankare graduirovannykh algebr”, Matem. zametki, 27 (1980), 21–32 | MR | Zbl

[10] Ufnarovskii V. A., “Kriterii rosta grafov i algebr, zadannykh slovami”, Matem. zametki, 31 (1982), 465–472 | MR | Zbl

[11] Ufnarovskii V. A., “Algebry, zadannye dvumya kvadratichnymi sootnosheniyami”, Ma-tem. issledovaniya AN MSSR. In-t matem. VTs, 76 (1984), 148–171 | MR | Zbl

[12] Ufnarovskii V. A., Grafy algebry i ogranichenno-determinirovannye funktsii, Dep. v VINITI, No 1845-80 DEP., M., 1980

[13] Kompyuternaya algebra. Simvolnye i algebraicheskie vychisleniya, Mir, M., 1986 | MR

[14] Borisenko V. V., “O matrichnykh predstavleniyakh konechno opredelennykh algebr, zadannykh konechnym mnozhestvom slov”, Vestn. MGU. Ser. 1. Matematika, mekhanika, 1985, no. 4, 75–77 | MR | Zbl