Multiplier operators connected with the Cauchy problem for the wave equation. Difference regularization
Sbornik. Mathematics, Tome 68 (1991) no. 2, pp. 391-416

Voir la notice de l'article provenant de la source Math-Net.Ru

For the operator $M_{t^\alpha}$, $t>0$, $\alpha+n/2\ne0,-1,-2,\dots$, defined on Fourier transforms of Schwartz functions $\omega\in S(\mathbf R^n)$ by the relation $$ F[M_{t^\alpha}\omega](\xi)=m_\alpha(t|\xi|)F[\omega](\xi),\quad m_\alpha(\rho)=\Gamma\biggl(\frac n2+\alpha\biggr)\biggl(\frac\rho2\biggr)^{1-n/2-\alpha}J_{n/2+\alpha-1}(\rho), $$ the question of extension to a bounded linear operator $\mathscr M_{t^\alpha}\colon L_p^r\to L_q^s$ is considered, where $L_p^r$ and $L_q^s$ are Lebesgue spaces of Bessel potentials, $1\leqslant p\leqslant\infty$, $1\leqslant q\leqslant\infty$, and $-\infty$, $-\infty$. Sharp conditions are obtained under which such an extension is possible. An explicit representation of $\mathscr M_{t^\alpha}f$ is given for $\alpha0$ and $f\in L_p^r$, $1\leqslant p\infty$, $r\geqslant0$, in the form of a difference hypersingular integral converging in the $L_q^s$-norm and almost everywhere. For the operator $M_{t^{\alpha,\beta}}$ generated by the Fourier multiplier $$ \mu_{t,\alpha,\beta}(\xi)=(1+|\xi|^2)^{-\beta/2}m_\alpha(t|\xi|), $$ an assertion is obtained regarding the convergence of $M_{t^{\alpha,\beta}}\varphi$, $\varphi\in L_p$, as $t\to0$ in the $L_q^s$-norm and almost everywhere which generalizes a familiar result of Stein corresponding to the case $\beta=0$. The results are applied to the investigation of the Cauchy problem for the wave equation in the scale of spaces $L_p^r$. Figures: 4. Bibliography: 43 titles.
@article{SM_1991_68_2_a4,
     author = {B. S. Rubin},
     title = {Multiplier operators connected with the {Cauchy} problem for the wave equation. {Difference} regularization},
     journal = {Sbornik. Mathematics},
     pages = {391--416},
     publisher = {mathdoc},
     volume = {68},
     number = {2},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_68_2_a4/}
}
TY  - JOUR
AU  - B. S. Rubin
TI  - Multiplier operators connected with the Cauchy problem for the wave equation. Difference regularization
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 391
EP  - 416
VL  - 68
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1991_68_2_a4/
LA  - en
ID  - SM_1991_68_2_a4
ER  - 
%0 Journal Article
%A B. S. Rubin
%T Multiplier operators connected with the Cauchy problem for the wave equation. Difference regularization
%J Sbornik. Mathematics
%D 1991
%P 391-416
%V 68
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1991_68_2_a4/
%G en
%F SM_1991_68_2_a4
B. S. Rubin. Multiplier operators connected with the Cauchy problem for the wave equation. Difference regularization. Sbornik. Mathematics, Tome 68 (1991) no. 2, pp. 391-416. http://geodesic.mathdoc.fr/item/SM_1991_68_2_a4/