Multiplier operators connected with the Cauchy problem for the wave equation. Difference regularization
Sbornik. Mathematics, Tome 68 (1991) no. 2, pp. 391-416
Voir la notice de l'article provenant de la source Math-Net.Ru
For the operator $M_{t^\alpha}$, $t>0$, $\alpha+n/2\ne0,-1,-2,\dots$, defined on Fourier transforms of Schwartz functions $\omega\in S(\mathbf R^n)$ by the relation
$$
F[M_{t^\alpha}\omega](\xi)=m_\alpha(t|\xi|)F[\omega](\xi),\quad m_\alpha(\rho)=\Gamma\biggl(\frac n2+\alpha\biggr)\biggl(\frac\rho2\biggr)^{1-n/2-\alpha}J_{n/2+\alpha-1}(\rho),
$$
the question of extension to a bounded linear operator $\mathscr M_{t^\alpha}\colon L_p^r\to L_q^s$ is considered, where $L_p^r$ and $L_q^s$ are Lebesgue spaces of Bessel potentials, $1\leqslant p\leqslant\infty$, $1\leqslant q\leqslant\infty$, and $-\infty$, $-\infty$. Sharp conditions are obtained under which such an extension is possible. An explicit representation of $\mathscr M_{t^\alpha}f$ is given for $\alpha0$ and $f\in L_p^r$, $1\leqslant p\infty$, $r\geqslant0$, in the form of a difference hypersingular integral converging in the $L_q^s$-norm and almost everywhere. For the operator $M_{t^{\alpha,\beta}}$ generated by the Fourier multiplier
$$
\mu_{t,\alpha,\beta}(\xi)=(1+|\xi|^2)^{-\beta/2}m_\alpha(t|\xi|),
$$
an assertion is obtained regarding the convergence of $M_{t^{\alpha,\beta}}\varphi$, $\varphi\in L_p$, as $t\to0$ in the $L_q^s$-norm and almost everywhere which generalizes a familiar result of Stein corresponding to the case $\beta=0$. The results are applied to the investigation of the Cauchy problem for the wave equation in the scale of spaces $L_p^r$.
Figures: 4.
Bibliography: 43 titles.
@article{SM_1991_68_2_a4,
author = {B. S. Rubin},
title = {Multiplier operators connected with the {Cauchy} problem for the wave equation. {Difference} regularization},
journal = {Sbornik. Mathematics},
pages = {391--416},
publisher = {mathdoc},
volume = {68},
number = {2},
year = {1991},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1991_68_2_a4/}
}
TY - JOUR AU - B. S. Rubin TI - Multiplier operators connected with the Cauchy problem for the wave equation. Difference regularization JO - Sbornik. Mathematics PY - 1991 SP - 391 EP - 416 VL - 68 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1991_68_2_a4/ LA - en ID - SM_1991_68_2_a4 ER -
B. S. Rubin. Multiplier operators connected with the Cauchy problem for the wave equation. Difference regularization. Sbornik. Mathematics, Tome 68 (1991) no. 2, pp. 391-416. http://geodesic.mathdoc.fr/item/SM_1991_68_2_a4/