Multiplier operators connected with the Cauchy problem for the wave equation. Difference regularization
Sbornik. Mathematics, Tome 68 (1991) no. 2, pp. 391-416 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the operator $M_{t^\alpha}$, $t>0$, $\alpha+n/2\ne0,-1,-2,\dots$, defined on Fourier transforms of Schwartz functions $\omega\in S(\mathbf R^n)$ by the relation $$ F[M_{t^\alpha}\omega](\xi)=m_\alpha(t|\xi|)F[\omega](\xi),\quad m_\alpha(\rho)=\Gamma\biggl(\frac n2+\alpha\biggr)\biggl(\frac\rho2\biggr)^{1-n/2-\alpha}J_{n/2+\alpha-1}(\rho), $$ the question of extension to a bounded linear operator $\mathscr M_{t^\alpha}\colon L_p^r\to L_q^s$ is considered, where $L_p^r$ and $L_q^s$ are Lebesgue spaces of Bessel potentials, $1\leqslant p\leqslant\infty$, $1\leqslant q\leqslant\infty$, and $-\infty, $-\infty. Sharp conditions are obtained under which such an extension is possible. An explicit representation of $\mathscr M_{t^\alpha}f$ is given for $\alpha<0$ and $f\in L_p^r$, $1\leqslant p<\infty$, $r\geqslant0$, in the form of a difference hypersingular integral converging in the $L_q^s$-norm and almost everywhere. For the operator $M_{t^{\alpha,\beta}}$ generated by the Fourier multiplier $$ \mu_{t,\alpha,\beta}(\xi)=(1+|\xi|^2)^{-\beta/2}m_\alpha(t|\xi|), $$ an assertion is obtained regarding the convergence of $M_{t^{\alpha,\beta}}\varphi$, $\varphi\in L_p$, as $t\to0$ in the $L_q^s$-norm and almost everywhere which generalizes a familiar result of Stein corresponding to the case $\beta=0$. The results are applied to the investigation of the Cauchy problem for the wave equation in the scale of spaces $L_p^r$. Figures: 4. Bibliography: 43 titles.
@article{SM_1991_68_2_a4,
     author = {B. S. Rubin},
     title = {Multiplier operators connected with the {Cauchy} problem for the wave equation. {Difference} regularization},
     journal = {Sbornik. Mathematics},
     pages = {391--416},
     year = {1991},
     volume = {68},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_68_2_a4/}
}
TY  - JOUR
AU  - B. S. Rubin
TI  - Multiplier operators connected with the Cauchy problem for the wave equation. Difference regularization
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 391
EP  - 416
VL  - 68
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1991_68_2_a4/
LA  - en
ID  - SM_1991_68_2_a4
ER  - 
%0 Journal Article
%A B. S. Rubin
%T Multiplier operators connected with the Cauchy problem for the wave equation. Difference regularization
%J Sbornik. Mathematics
%D 1991
%P 391-416
%V 68
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1991_68_2_a4/
%G en
%F SM_1991_68_2_a4
B. S. Rubin. Multiplier operators connected with the Cauchy problem for the wave equation. Difference regularization. Sbornik. Mathematics, Tome 68 (1991) no. 2, pp. 391-416. http://geodesic.mathdoc.fr/item/SM_1991_68_2_a4/

[1] Strichartz R. S., “Convolutions with kernels having singularities on a sphere”, Trans. Amer. Math. Soc., 148 (1970), 461–471 | DOI | MR | Zbl

[2] Stein E. M., “Maximal functions: spherical means”, Proc. Math. Acad. Sci. USA., 73:7 (1976), 2174–2175 | DOI | MR | Zbl

[3] Peral J. C., “$L_P$-estimates for the wave equation”, J. Funct. Anal., 36:1 (1980), 114–115 | DOI | MR

[4] Miyachi A., “On some singular Fourier multipliers”, J. Fac. Sci. Univ. Tokyo, Sec. 1A, 28:2 (1981), 267–315 | MR | Zbl

[5] Miyachi A., “On some estimates for the wave equation in $L^p$ and $H^p$”, J. Fac. Sci. Univ. Tokyo. Sect. 1A, 27:2 (1980), 331–354 | MR | Zbl

[6] Marchaud A., “Sur les derivees et sur les differences des fonctions de variables reeles”, J. Math. Pures et Appl., 6:Fasc. IV (1927), 337–425 | Zbl

[7] Stein E. M., “The characterization of functions arising as potentials. I”, Bull. Amer. Math. Soc., 67:1 (1971), 102–104 | DOI | MR

[8] Lizorkin P. I., “Opisanie prostranstv $L_p^r(R^n)$ v terminakh raznostnykh singulyarnykh integralov”, Matem. sb., 81(123) (1970), 79–91 | MR | Zbl

[9] Samko S. G., “O prostranstvakh rissovykh potentsialov”, Izv. AN SSSR. Ser. matem., 40 (1976), 1143–1172 | MR | Zbl

[10] Samko S. G., Gipersingulyarnye integraly i ikh prilozheniya, Izd-vo Rost. un-ta, Rostov-na-Donu, 1984 | MR | Zbl

[11] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987 | MR | Zbl

[12] Rubin B. S., “One-sided potentials, the spaces $L_{p,r}^\alpha$ and the inversion of Riesz and Bessel potentials in the half-space”, Math. Nachr., 136 (1988), 177–208 | DOI | MR | Zbl