On the sharpness of Novikov type inequalities for manifolds with free Abelian fundamental group
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 68 (1991) no. 2, pp. 351-389
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For manifolds $M^n$, $n\geqslant6$, with free Abelian fundamental group and four-connected universal covering, the author proves the sharpness of Novikov's inequalities for rational cohomology classes $\xi\in H^1(M,\mathbf Q)$ belonging to an open everywhere dense set $U\subset H^1(M,\mathbf R)$. 
Figures: 1.
Bibliography: 20 titles.
			
            
            
            
          
        
      @article{SM_1991_68_2_a3,
     author = {A. V. Pajitnov},
     title = {On the sharpness of {Novikov} type inequalities for manifolds with free {Abelian} fundamental group},
     journal = {Sbornik. Mathematics},
     pages = {351--389},
     publisher = {mathdoc},
     volume = {68},
     number = {2},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_68_2_a3/}
}
                      
                      
                    TY - JOUR AU - A. V. Pajitnov TI - On the sharpness of Novikov type inequalities for manifolds with free Abelian fundamental group JO - Sbornik. Mathematics PY - 1991 SP - 351 EP - 389 VL - 68 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1991_68_2_a3/ LA - en ID - SM_1991_68_2_a3 ER -
A. V. Pajitnov. On the sharpness of Novikov type inequalities for manifolds with free Abelian fundamental group. Sbornik. Mathematics, Tome 68 (1991) no. 2, pp. 351-389. http://geodesic.mathdoc.fr/item/SM_1991_68_2_a3/
