On the sharpness of Novikov type inequalities for manifolds with free Abelian fundamental group
Sbornik. Mathematics, Tome 68 (1991) no. 2, pp. 351-389

Voir la notice de l'article provenant de la source Math-Net.Ru

For manifolds $M^n$, $n\geqslant6$, with free Abelian fundamental group and four-connected universal covering, the author proves the sharpness of Novikov's inequalities for rational cohomology classes $\xi\in H^1(M,\mathbf Q)$ belonging to an open everywhere dense set $U\subset H^1(M,\mathbf R)$. Figures: 1. Bibliography: 20 titles.
@article{SM_1991_68_2_a3,
     author = {A. V. Pajitnov},
     title = {On the sharpness of {Novikov} type inequalities for manifolds with free {Abelian} fundamental group},
     journal = {Sbornik. Mathematics},
     pages = {351--389},
     publisher = {mathdoc},
     volume = {68},
     number = {2},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_68_2_a3/}
}
TY  - JOUR
AU  - A. V. Pajitnov
TI  - On the sharpness of Novikov type inequalities for manifolds with free Abelian fundamental group
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 351
EP  - 389
VL  - 68
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1991_68_2_a3/
LA  - en
ID  - SM_1991_68_2_a3
ER  - 
%0 Journal Article
%A A. V. Pajitnov
%T On the sharpness of Novikov type inequalities for manifolds with free Abelian fundamental group
%J Sbornik. Mathematics
%D 1991
%P 351-389
%V 68
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1991_68_2_a3/
%G en
%F SM_1991_68_2_a3
A. V. Pajitnov. On the sharpness of Novikov type inequalities for manifolds with free Abelian fundamental group. Sbornik. Mathematics, Tome 68 (1991) no. 2, pp. 351-389. http://geodesic.mathdoc.fr/item/SM_1991_68_2_a3/