On the sharpness of Novikov type inequalities for manifolds with free Abelian fundamental group
Sbornik. Mathematics, Tome 68 (1991) no. 2, pp. 351-389 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For manifolds $M^n$, $n\geqslant6$, with free Abelian fundamental group and four-connected universal covering, the author proves the sharpness of Novikov's inequalities for rational cohomology classes $\xi\in H^1(M,\mathbf Q)$ belonging to an open everywhere dense set $U\subset H^1(M,\mathbf R)$. Figures: 1. Bibliography: 20 titles.
@article{SM_1991_68_2_a3,
     author = {A. V. Pajitnov},
     title = {On the sharpness of {Novikov} type inequalities for manifolds with free {Abelian} fundamental group},
     journal = {Sbornik. Mathematics},
     pages = {351--389},
     year = {1991},
     volume = {68},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_68_2_a3/}
}
TY  - JOUR
AU  - A. V. Pajitnov
TI  - On the sharpness of Novikov type inequalities for manifolds with free Abelian fundamental group
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 351
EP  - 389
VL  - 68
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1991_68_2_a3/
LA  - en
ID  - SM_1991_68_2_a3
ER  - 
%0 Journal Article
%A A. V. Pajitnov
%T On the sharpness of Novikov type inequalities for manifolds with free Abelian fundamental group
%J Sbornik. Mathematics
%D 1991
%P 351-389
%V 68
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1991_68_2_a3/
%G en
%F SM_1991_68_2_a3
A. V. Pajitnov. On the sharpness of Novikov type inequalities for manifolds with free Abelian fundamental group. Sbornik. Mathematics, Tome 68 (1991) no. 2, pp. 351-389. http://geodesic.mathdoc.fr/item/SM_1991_68_2_a3/

[1] Novikov S. P., “Mnogoznachnye funktsii i funktsionaly. Analog teorii Morsa”, DAN SSSR, 270:1 (1981), 31–35

[2] Novikov S. P., “Gamiltonov formalizm i mnogoznachnyi analog teorii Morsa”, UMN, 37:5 (1982), 3–49 | MR | Zbl

[3] Smale S., “On the structure of manifolds”, Amer. J. Math., 84 (1962), 387–389 | DOI | MR

[4] Farber M. Sh., “Tochnost neravenstv Novikova”, Funktsion. analiz i ego prilozheniya, 19:1 (1985), 49–59 | MR | Zbl

[5] Browder W., Levine J., “Hibering manifolds over $S^1$”, Comment. Math. Helv., 40, 153–160 | DOI | MR | Zbl

[6] Pazhitnov L. V., “O tochnosti neravenstva tipa Novikova dlya sluchaya $\pi_1M^n=\mathbf{Z}^m$ i morsovskikh form, klassy kogomologii kotorykh nakhodyatsya v obschem polozhenii”, DAN SSSR, 306:3 (1989), 544–548 | MR | Zbl

[7] Bogoyavlenskii O. I., “O tochnoi funktsii na mnogoobraziyakh”, Matem. zametki, 8:1 (1970), 77–83

[8] Sharko V. V., $K$-teoriya i teoriya Morsa. I, Preprint No 86. 39, In-t matematiki AN USSR, 1986

[9] Sharko V. V., $K$-teoriya i teoriya Morsa. II, Preprint No 86. 40, In-t matematiki AN USSR, 1986

[10] Burbaki N., Kommutativnaya algebra, Nauka, M., 1971

[11] Polia G., Segë G., Zadachi i teoremy iz analiza, t. 2, Nauka, M., 1978

[12] Novikov S. P., “Blokhovskie gomologii. Kriticheskie tochki funktsii i zamknutykh $1$-form”, DAN SSSR, 287:6 (1986), 1321–1324 | MR

[13] Pazhitnov A. V., “Analiticheskoe dokazatelstvo veschestvennoi chasti neravenstv Novikova”, DAN SSSR, 293:6 (1987), 1305–1307 | MR | Zbl

[14] Cockroft W., Swan R, “On the homotopy type of certain two-dimensional complexes”, Proc. London Math. Soc., 11:42 (1961), 306–311 | MR

[15] Base X., Algebraicheskaya $K$-teoriya, Mir, M., 1973 | MR

[16] Suslin A. A., “Proektivnye moduli nad koltsom mnogochlenov svobodny”, DAN SSSR, 229:5 (1976), 1063–1066 | MR | Zbl

[17] Quillen D., “Projective modules over polynomial rings”, Invent. Math., 36:1 (1976), 167–171 | DOI | MR | Zbl

[18] Kumar M., “Stably free modules”, Amer. J. Math., 107:6 (1985), 1439–1443 | DOI | MR