Solvability of some elliptic problems with critical exponent of nonlinearity
Sbornik. Mathematics, Tome 68 (1991) no. 2, pp. 339-349 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem $$ \begin{cases} \Delta_{m,g}u+b(x)u^{m^*-1}+f(x,u)=0\quad\text{in}\ \Omega, \\ u\geqslant0\quad\text{in}\ \Omega, \\ u=0\quad\text{on}\ \partial\Omega, \end{cases} $$ is investigated, where $$ \Delta_{m,g}u=\nabla_i(g(x)|\nabla u|^{m-2}\nabla_iu), $$ $\Omega$ is an open domain in $\mathbf R^N$, $1, $m^\ast-1=\dfrac{Nm}{N-m}-1$ is the critical exponent, and $f(x,u)$ has a growth exponent less than the critical one. Theorems on the existence of a nontrivial solution of this problem is the space $\mathring W^{1,m}(\Omega)$ and spaces of more regular functions are proved under appropriate assumptions. Bibliography: 17 titles
@article{SM_1991_68_2_a2,
     author = {I. A. Kuzin},
     title = {Solvability of some elliptic problems with critical exponent of nonlinearity},
     journal = {Sbornik. Mathematics},
     pages = {339--349},
     year = {1991},
     volume = {68},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_68_2_a2/}
}
TY  - JOUR
AU  - I. A. Kuzin
TI  - Solvability of some elliptic problems with critical exponent of nonlinearity
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 339
EP  - 349
VL  - 68
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1991_68_2_a2/
LA  - en
ID  - SM_1991_68_2_a2
ER  - 
%0 Journal Article
%A I. A. Kuzin
%T Solvability of some elliptic problems with critical exponent of nonlinearity
%J Sbornik. Mathematics
%D 1991
%P 339-349
%V 68
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1991_68_2_a2/
%G en
%F SM_1991_68_2_a2
I. A. Kuzin. Solvability of some elliptic problems with critical exponent of nonlinearity. Sbornik. Mathematics, Tome 68 (1991) no. 2, pp. 339-349. http://geodesic.mathdoc.fr/item/SM_1991_68_2_a2/

[1] Brezis H., Nirenberg L., “Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents”, Comm. Pure Appl. Math., 36:4 (1983), 437–477 | DOI | MR | Zbl

[2] Joseph D., Lundgren T., “Quasilinear Dirihlet problems driven bv positive sourses”, Arch. Rat. Mech. Anal., 49:4 (1973), 241–269 | DOI | MR | Zbl

[3] Aubin T., Nonlinear analysis on manifolds. Monge–Ampere equations, Springer, N. Y., 1982 | MR

[4] Bahri A., Coron J. M., “Sur une equation elliptic non lineare avec l'exposant critique de Sobolev”, C. R. Acad. Sc. Paris, Ser. 1, 301:7 (1985), 345–348 | MR | Zbl

[5] Atkinson F. V., Peletier L. A., “Emden–Fowler equations involving critical exponents”, Nonlinear Anal., 10:8 (1986), 755–776 | DOI | MR | Zbl

[6] Egnell H., “Existence and nonexistence results for $m$-Laplace equations involving critical Sobolev exponents”, Uppsala University D. M. Report, 1987, no. 12 | MR | Zbl

[7] Ambrosetti A., Rabinowitz P., “Dual variational methods in critical point theory and applications”, J. Funct. Anal., 14:3 (1973), 349–381 | DOI | MR | Zbl

[8] Brezis H., Coron J. M., Nirenberg L., “Free vibrations for a nonlinear wave equation and a theorem of P. Rabinowitz”, Comm. Pure Appl. Math., 33:5 (1980), 667–689 | DOI | MR

[9] Tolksdorf P., “Regularity for a more general class of quasilinear elliptic equations”, J. Diff. Eq., 5:1 (1984), 126–150 | DOI | MR

[10] Trudinger N. S., “Remarks concerning the conformal deformation of Riemannian structure on compact manifolds”, Ann. Sc. Norm. Sup. Piza, 22, F. 2 (1968), 265–274 | MR | Zbl

[11] Moser J., “A new proof of de Giorge's theorem concerning the regularity problem for elliptic differential equations”, Comm. Pure Appl. Math., 13:3 (1960), 457–468 | DOI | MR | Zbl

[12] Gilbarg D., Trudinger N. S., Elliptic partial differential equations of second order, Springer, N. Y., 1977 | MR | Zbl

[13] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR

[14] DiBenedetto E., “$C^{1+\alpha}$ local regularity of weak solutions of degenerate elliptic equations”, Nonlinear Anal., 7:8 (1983), 827–850 | DOI | MR | Zbl

[15] Talenti G., “Best constant in Sobolev inequality”, Annali Mat. Pura Appl., 110:4, 351–372 | MR

[16] Serrin J., “Local behavior of quasi-linear equations”, Actc. Mat., 111:3–4 (1964), 247–302 | DOI | MR | Zbl

[17] Trudinger N. S., “On Harnach type inequalities and their application to quasilinear elliptic equations”, Comm. Pure Appl. Math., 20:4 (1967), 721–747 | DOI | MR | Zbl