@article{SM_1991_68_2_a10,
author = {A. Ya. Helemskii},
title = {The homological essence of {Connes} amenability: injectivity of the predual bimodule},
journal = {Sbornik. Mathematics},
pages = {555--566},
year = {1991},
volume = {68},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1991_68_2_a10/}
}
A. Ya. Helemskii. The homological essence of Connes amenability: injectivity of the predual bimodule. Sbornik. Mathematics, Tome 68 (1991) no. 2, pp. 555-566. http://geodesic.mathdoc.fr/item/SM_1991_68_2_a10/
[1] Johnson B. E., Cohomology in Banach algebras, Mem. Amer. Math. Soc., 127, A. M. S., Providence R. I., 1972 | MR
[2] Johnson B. E., “Approximate diagonals and cohomology of certain annihilator Banach algebras”, Amer. J. Math., 94 (1972), 685–698 | DOI | MR | Zbl
[3] Johnson B. E., Kadison R. V., Ringrose J. R., “Cohomology of operator algebras. III. Reduction to normal cohomology”, Bull. Soc. Math. France, 100 (1972), 73–96 | MR | Zbl
[4] Connes A., “Classification of injective factors”, Ann. of Math., 104 (1976), 73–115 | DOI | MR | Zbl
[5] Connes A., “On the cohomology of operator algebras”, J. Funct. Anal., 28. (1978), 248–253 | DOI | MR | Zbl
[6] Lau A. T., “Characterisations of amenable Banach algebras”, Proc. Amer. Math. Soc., 70 (1978), 156–160 | DOI | MR | Zbl
[7] Ringrose J. R., “Cohomology theory for operator algebras”, Operator algebras and applications, pt. 2, Proc. of Symp. in Pure Math., 38, eds. Kadison R. V., Providence, 1982, 229–252 | MR | Zbl
[8] Selivanov Yu. V., “Biproektivnye banakhovy algebry”, Izv. AN SSSR. Ser. matem., 43 (1979), 1159–1174 | MR | Zbl
[9] Takesaki M., Theory of Operator Algebras, v. I, Springer, Berlin, 1979 | MR
[10] Haagerup U., “The Grothendieck inequality for bilinear forms on $C^*$-algebras”, Adv.in Math., 56 (1985), 93–116 | DOI | MR | Zbl
[11] Haagerup U., “All nuclear $C^*$-algebras are amenable”, Invent. Math., 74 (1983), 305–319 | DOI | MR | Zbl
[12] Khelemskii A. Ya., Gomologiya v banakhovykh i topologicheskikh algebrakh, Izd-vo, M., 1986 | MR
[13] Khelemskii A. Ya., Banakhovy i polinormirovannye algebry: obschaya teoriya, predstavleniya, gomologii, Nauka, M., 1989 | MR
[14] Elliott G. A., “On approximately finite-dimensional von Neumann algebras. II”, Canad. Math. Bull., 21 (1978), 415–418 | MR | Zbl
[15] Effros E. G., “Advances in quantized functional analysis”, Proc. Int. Congr. Math. (Berkely, Calif., Aug. 3–11, 1986), v. 2, Providence, R. I., 1987, 906–916 | MR
[16] Effros E. G., “Amenability and virtual diagonal for von Neumann algebras”, J. Funct. Anal., 78:1 (1988), 137–153 | DOI | MR | Zbl
[17] Effros E. G., Kishimoto A., “Module maps and Hochshild–Johnson cohomology”, Indiana Univ. Math. J., 36 (1987), 257–276 | DOI | MR | Zbl