The homological essence of Connes amenability: injectivity of the predual bimodule
Sbornik. Mathematics, Tome 68 (1991) no. 2, pp. 555-566 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that the normal cohomology groups of an operator $C^*$-algebra and, in particular, of a von Neumann algebra are a special case of the standard functor $\operatorname{Ext}$ for Banach bimodules. As a consequence, it is established that Connes amenability of a von Neumann algebra is equivalent to the injectivity (in the sense of “Banach” homological algebra) of the predual bimodule of the algebra. As another consequence, a short proof of the theorem of Johnson, Kadison, and Ringrose on the coincidence of the normal and ordinary (continuous) cohomology is given, in a somewhat strengthened form. Bibliography: 17 titles.
@article{SM_1991_68_2_a10,
     author = {A. Ya. Helemskii},
     title = {The homological essence of {Connes} amenability: injectivity of the predual bimodule},
     journal = {Sbornik. Mathematics},
     pages = {555--566},
     year = {1991},
     volume = {68},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_68_2_a10/}
}
TY  - JOUR
AU  - A. Ya. Helemskii
TI  - The homological essence of Connes amenability: injectivity of the predual bimodule
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 555
EP  - 566
VL  - 68
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1991_68_2_a10/
LA  - en
ID  - SM_1991_68_2_a10
ER  - 
%0 Journal Article
%A A. Ya. Helemskii
%T The homological essence of Connes amenability: injectivity of the predual bimodule
%J Sbornik. Mathematics
%D 1991
%P 555-566
%V 68
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1991_68_2_a10/
%G en
%F SM_1991_68_2_a10
A. Ya. Helemskii. The homological essence of Connes amenability: injectivity of the predual bimodule. Sbornik. Mathematics, Tome 68 (1991) no. 2, pp. 555-566. http://geodesic.mathdoc.fr/item/SM_1991_68_2_a10/

[1] Johnson B. E., Cohomology in Banach algebras, Mem. Amer. Math. Soc., 127, A. M. S., Providence R. I., 1972 | MR

[2] Johnson B. E., “Approximate diagonals and cohomology of certain annihilator Banach algebras”, Amer. J. Math., 94 (1972), 685–698 | DOI | MR | Zbl

[3] Johnson B. E., Kadison R. V., Ringrose J. R., “Cohomology of operator algebras. III. Reduction to normal cohomology”, Bull. Soc. Math. France, 100 (1972), 73–96 | MR | Zbl

[4] Connes A., “Classification of injective factors”, Ann. of Math., 104 (1976), 73–115 | DOI | MR | Zbl

[5] Connes A., “On the cohomology of operator algebras”, J. Funct. Anal., 28. (1978), 248–253 | DOI | MR | Zbl

[6] Lau A. T., “Characterisations of amenable Banach algebras”, Proc. Amer. Math. Soc., 70 (1978), 156–160 | DOI | MR | Zbl

[7] Ringrose J. R., “Cohomology theory for operator algebras”, Operator algebras and applications, pt. 2, Proc. of Symp. in Pure Math., 38, eds. Kadison R. V., Providence, 1982, 229–252 | MR | Zbl

[8] Selivanov Yu. V., “Biproektivnye banakhovy algebry”, Izv. AN SSSR. Ser. matem., 43 (1979), 1159–1174 | MR | Zbl

[9] Takesaki M., Theory of Operator Algebras, v. I, Springer, Berlin, 1979 | MR

[10] Haagerup U., “The Grothendieck inequality for bilinear forms on $C^*$-algebras”, Adv.in Math., 56 (1985), 93–116 | DOI | MR | Zbl

[11] Haagerup U., “All nuclear $C^*$-algebras are amenable”, Invent. Math., 74 (1983), 305–319 | DOI | MR | Zbl

[12] Khelemskii A. Ya., Gomologiya v banakhovykh i topologicheskikh algebrakh, Izd-vo, M., 1986 | MR

[13] Khelemskii A. Ya., Banakhovy i polinormirovannye algebry: obschaya teoriya, predstavleniya, gomologii, Nauka, M., 1989 | MR

[14] Elliott G. A., “On approximately finite-dimensional von Neumann algebras. II”, Canad. Math. Bull., 21 (1978), 415–418 | MR | Zbl

[15] Effros E. G., “Advances in quantized functional analysis”, Proc. Int. Congr. Math. (Berkely, Calif., Aug. 3–11, 1986), v. 2, Providence, R. I., 1987, 906–916 | MR

[16] Effros E. G., “Amenability and virtual diagonal for von Neumann algebras”, J. Funct. Anal., 78:1 (1988), 137–153 | DOI | MR | Zbl

[17] Effros E. G., Kishimoto A., “Module maps and Hochshild–Johnson cohomology”, Indiana Univ. Math. J., 36 (1987), 257–276 | DOI | MR | Zbl