@article{SM_1991_68_2_a0,
author = {V. V. Andrievskii and V. I. Belyi and V. V. Maimeskul},
title = {Approximation of solutions of the equation $\overline\partial^jf=0$, $j\geqslant1$, in domain with quasiconformal boundary},
journal = {Sbornik. Mathematics},
pages = {303--323},
year = {1991},
volume = {68},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1991_68_2_a0/}
}
TY - JOUR AU - V. V. Andrievskii AU - V. I. Belyi AU - V. V. Maimeskul TI - Approximation of solutions of the equation $\overline\partial^jf=0$, $j\geqslant1$, in domain with quasiconformal boundary JO - Sbornik. Mathematics PY - 1991 SP - 303 EP - 323 VL - 68 IS - 2 UR - http://geodesic.mathdoc.fr/item/SM_1991_68_2_a0/ LA - en ID - SM_1991_68_2_a0 ER -
%0 Journal Article %A V. V. Andrievskii %A V. I. Belyi %A V. V. Maimeskul %T Approximation of solutions of the equation $\overline\partial^jf=0$, $j\geqslant1$, in domain with quasiconformal boundary %J Sbornik. Mathematics %D 1991 %P 303-323 %V 68 %N 2 %U http://geodesic.mathdoc.fr/item/SM_1991_68_2_a0/ %G en %F SM_1991_68_2_a0
V. V. Andrievskii; V. I. Belyi; V. V. Maimeskul. Approximation of solutions of the equation $\overline\partial^jf=0$, $j\geqslant1$, in domain with quasiconformal boundary. Sbornik. Mathematics, Tome 68 (1991) no. 2, pp. 303-323. http://geodesic.mathdoc.fr/item/SM_1991_68_2_a0/
[1] Carmona J. J., “Mergelyan's approximation theorem for rational modules”, J. Appr. Theory, 44:2 (1985), 113–126 | DOI | MR | Zbl
[2] O'Farell A. G., “Annihilator's of rational modules”, J. Funct. Anal., 19 (1975), 373–389 | DOI | MR
[3] Trent T., Wang J., “The uniform closure of rational modules”, Bull. London Math. Soc., 13 (1981), 415–420 | DOI | MR | Zbl
[4] Verdera J., “Approximation by rational modules in Sobolev and Lipschitz norms”, J. Funct. Anal., 58 (1984), 267–290 | DOI | MR | Zbl
[5] Belyi V. I., “Konformnye otobrazheniya i priblizhenie funktsii v oblastyakh s kvazikonformnoi granitsei”, Matem sb., 102(144) (1977), 331–361 | MR | Zbl
[6] Andrievskii V. V., “Geometricheskoe stroenie oblastei i pryamye teoremy konstruktivnoi teorii fukktsii”, Matem. sb., 126(168) (1985), 41–58 | MR | Zbl
[7] Alfors L., Lektsii po kvazikonformnym otobrazheniyam, Mir, M., 1969 | MR
[8] Polyakov R. V., “Priblizhenie nepreryvnykh (analiticheskikh vnutri) funktsii v oblastyakh s gladkoi granitsei”, Ukr. matem. zhurn., 24:1 (1972), 57–68 | MR | Zbl
[9] Shevchuk I. A., “Konstruktivnaya kharakteristika nepreryvnykh na mnozhestve $\mathfrak{M}\subset\mathbf{C}$ funktsii dlya $k$-go modulya nepreryvnosti”, Matem. zametki, 25:2 (1979), 225–247 | MR | Zbl
[10] Vorobev N. P., Polyakov R. V., “O konstruktivnoi kharakteristike nepreryvnykh funktsii, zadannykh na gladkikh dugakh”, Ukr. matem. zhurn., 20:6 (1968), 750–758 | MR | Zbl
[11] Tamrazov P. M., Gladkosti i polinomialnye priblizheniya, Naukova dumka, Kiev, 1975 | MR | Zbl
[12] Dynkin E. M., “O ravnomernom priblizhenii funktsii v zhordanovykh oblastyakh”, Sib. matem. zhurn., 18:4 (1977), 775–786 | MR
[13] Lebedev N. A., Tamrazov P. M., “Obratnye teoremy priblizheniya na regulyarnykh kompaktakh kompleksnoi ploskosti”, Izv. AN SSSR. Ser. matem., 34:6 (1970), 1340–1390 | MR | Zbl
[14] Dzyadyk V. K., Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977 | MR | Zbl
[15] Tamrazov P. M., Belyi V. I., “Polinomialnye priblizheniya i moduli gladkosti funktsii v oblastyakh s kvazikonformnoi granitsei”, Sib. matem. zhurn., 21:3 (1980), 162–176 | MR | Zbl
[16] Andrievskii V. V., “Opisanie klassov funktsii s zadannoi skorostyu ubyvaniya ikh nailuchshikh ravnomernykh polinomialnykh priblizhenii”, Ukr. matem. zhurn., 36:5 (1984), 602–606 | MR | Zbl
[17] Stein I. M., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR
[18] Dynkin E. M., “Konstruktivnaya kharakteristika funktsii klassov S. L. Soboleva i O. V. Besova”, Tr. MIAN, 155, 1981, 41–76 | MR | Zbl
[19] Andrievskii V. V., “Approksimatsionnaya kharakteristika klassov funktsii na kontinuumakh kompleksnoi ploskosti”, Matem. sb., 125(167) (1984), 70–87 | MR