Approximation of solutions of the equation $\overline\partial^jf=0$, $j\geqslant1$, in domain with quasiconformal boundary
Sbornik. Mathematics, Tome 68 (1991) no. 2, pp. 303-323 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article establishes direct and inverse theorems of approximation theory (of the same type as theorems of Dzyadyk) that describe the quantitative connection between the smoothness properties of solutions of the equation $$\overline\partial^jf=0,\qquad j\geqslant1,$$ and the rate of their approximation by “module” polynomials of the form $$ P_N(z)=\sum_{n=0}^{j-1}\sum_{m=0}^{N-n}a_{m,n}z^m\overline z^n,\qquad N\geqslant j-1. $$ In particular, a constructive characterization is obtained for generalized Hölder classes of such functions on domains with quasiconformal boundary. Bibliography: 19 titles.
@article{SM_1991_68_2_a0,
     author = {V. V. Andrievskii and V. I. Belyi and V. V. Maimeskul},
     title = {Approximation of solutions of the equation $\overline\partial^jf=0$, $j\geqslant1$, in domain with quasiconformal boundary},
     journal = {Sbornik. Mathematics},
     pages = {303--323},
     year = {1991},
     volume = {68},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_68_2_a0/}
}
TY  - JOUR
AU  - V. V. Andrievskii
AU  - V. I. Belyi
AU  - V. V. Maimeskul
TI  - Approximation of solutions of the equation $\overline\partial^jf=0$, $j\geqslant1$, in domain with quasiconformal boundary
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 303
EP  - 323
VL  - 68
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1991_68_2_a0/
LA  - en
ID  - SM_1991_68_2_a0
ER  - 
%0 Journal Article
%A V. V. Andrievskii
%A V. I. Belyi
%A V. V. Maimeskul
%T Approximation of solutions of the equation $\overline\partial^jf=0$, $j\geqslant1$, in domain with quasiconformal boundary
%J Sbornik. Mathematics
%D 1991
%P 303-323
%V 68
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1991_68_2_a0/
%G en
%F SM_1991_68_2_a0
V. V. Andrievskii; V. I. Belyi; V. V. Maimeskul. Approximation of solutions of the equation $\overline\partial^jf=0$, $j\geqslant1$, in domain with quasiconformal boundary. Sbornik. Mathematics, Tome 68 (1991) no. 2, pp. 303-323. http://geodesic.mathdoc.fr/item/SM_1991_68_2_a0/

[1] Carmona J. J., “Mergelyan's approximation theorem for rational modules”, J. Appr. Theory, 44:2 (1985), 113–126 | DOI | MR | Zbl

[2] O'Farell A. G., “Annihilator's of rational modules”, J. Funct. Anal., 19 (1975), 373–389 | DOI | MR

[3] Trent T., Wang J., “The uniform closure of rational modules”, Bull. London Math. Soc., 13 (1981), 415–420 | DOI | MR | Zbl

[4] Verdera J., “Approximation by rational modules in Sobolev and Lipschitz norms”, J. Funct. Anal., 58 (1984), 267–290 | DOI | MR | Zbl

[5] Belyi V. I., “Konformnye otobrazheniya i priblizhenie funktsii v oblastyakh s kvazikonformnoi granitsei”, Matem sb., 102(144) (1977), 331–361 | MR | Zbl

[6] Andrievskii V. V., “Geometricheskoe stroenie oblastei i pryamye teoremy konstruktivnoi teorii fukktsii”, Matem. sb., 126(168) (1985), 41–58 | MR | Zbl

[7] Alfors L., Lektsii po kvazikonformnym otobrazheniyam, Mir, M., 1969 | MR

[8] Polyakov R. V., “Priblizhenie nepreryvnykh (analiticheskikh vnutri) funktsii v oblastyakh s gladkoi granitsei”, Ukr. matem. zhurn., 24:1 (1972), 57–68 | MR | Zbl

[9] Shevchuk I. A., “Konstruktivnaya kharakteristika nepreryvnykh na mnozhestve $\mathfrak{M}\subset\mathbf{C}$ funktsii dlya $k$-go modulya nepreryvnosti”, Matem. zametki, 25:2 (1979), 225–247 | MR | Zbl

[10] Vorobev N. P., Polyakov R. V., “O konstruktivnoi kharakteristike nepreryvnykh funktsii, zadannykh na gladkikh dugakh”, Ukr. matem. zhurn., 20:6 (1968), 750–758 | MR | Zbl

[11] Tamrazov P. M., Gladkosti i polinomialnye priblizheniya, Naukova dumka, Kiev, 1975 | MR | Zbl

[12] Dynkin E. M., “O ravnomernom priblizhenii funktsii v zhordanovykh oblastyakh”, Sib. matem. zhurn., 18:4 (1977), 775–786 | MR

[13] Lebedev N. A., Tamrazov P. M., “Obratnye teoremy priblizheniya na regulyarnykh kompaktakh kompleksnoi ploskosti”, Izv. AN SSSR. Ser. matem., 34:6 (1970), 1340–1390 | MR | Zbl

[14] Dzyadyk V. K., Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977 | MR | Zbl

[15] Tamrazov P. M., Belyi V. I., “Polinomialnye priblizheniya i moduli gladkosti funktsii v oblastyakh s kvazikonformnoi granitsei”, Sib. matem. zhurn., 21:3 (1980), 162–176 | MR | Zbl

[16] Andrievskii V. V., “Opisanie klassov funktsii s zadannoi skorostyu ubyvaniya ikh nailuchshikh ravnomernykh polinomialnykh priblizhenii”, Ukr. matem. zhurn., 36:5 (1984), 602–606 | MR | Zbl

[17] Stein I. M., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR

[18] Dynkin E. M., “Konstruktivnaya kharakteristika funktsii klassov S. L. Soboleva i O. V. Besova”, Tr. MIAN, 155, 1981, 41–76 | MR | Zbl

[19] Andrievskii V. V., “Approksimatsionnaya kharakteristika klassov funktsii na kontinuumakh kompleksnoi ploskosti”, Matem. sb., 125(167) (1984), 70–87 | MR