Semiregular corner singularities of smooth functions
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 68 (1991) no. 1, pp. 151-163
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The author considers $m$-corner singular points (boundary points for $m=1$) of smooth functions with nondegenerate second differentials, and studies bifurcation diagrams of functions (of corner singularities) and asymptotic representations of bifurcation conditional extremals (in the corner). For $m=2$, three soft bifurcations of conditional minima are described. Examples are given to illustrate potential applications of corner singularities of nonlinear variational equations of mathematical physics. 
Figures 4.
Bibliography: 29 titles.
			
            
            
            
          
        
      @article{SM_1991_68_1_a7,
     author = {Yu. I. Sapronov},
     title = {Semiregular corner singularities of smooth functions},
     journal = {Sbornik. Mathematics},
     pages = {151--163},
     publisher = {mathdoc},
     volume = {68},
     number = {1},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_68_1_a7/}
}
                      
                      
                    Yu. I. Sapronov. Semiregular corner singularities of smooth functions. Sbornik. Mathematics, Tome 68 (1991) no. 1, pp. 151-163. http://geodesic.mathdoc.fr/item/SM_1991_68_1_a7/
