Multidimensional Abelian and Tauberian comparison theorems
Sbornik. Mathematics, Tome 68 (1991) no. 1, pp. 85-110

Voir la notice de l'article provenant de la source Math-Net.Ru

Theorems in which a specified asymptotic behavior of the quotient of two (generalized) functions leads to a conclusion about the asymptotic behavior of the quotient of integral transforms of them are called Abelian comparison theorems. The theorems converse to them are called Tauberian comparison theorems. This article concerns some Abelian and Tauberian comparison theorems for generalized functions with supports in pointed cones. The Laplace transform is used as an integral transform. It is shown that additional “Abelian” conditions are needed for the validity of Abelian theorems in the multidimensional case. Bibliography: 5 titles.
@article{SM_1991_68_1_a4,
     author = {Yu. N. Drozhzhinov and B. I. Zavialov},
     title = {Multidimensional {Abelian} and {Tauberian} comparison theorems},
     journal = {Sbornik. Mathematics},
     pages = {85--110},
     publisher = {mathdoc},
     volume = {68},
     number = {1},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_68_1_a4/}
}
TY  - JOUR
AU  - Yu. N. Drozhzhinov
AU  - B. I. Zavialov
TI  - Multidimensional Abelian and Tauberian comparison theorems
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 85
EP  - 110
VL  - 68
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1991_68_1_a4/
LA  - en
ID  - SM_1991_68_1_a4
ER  - 
%0 Journal Article
%A Yu. N. Drozhzhinov
%A B. I. Zavialov
%T Multidimensional Abelian and Tauberian comparison theorems
%J Sbornik. Mathematics
%D 1991
%P 85-110
%V 68
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1991_68_1_a4/
%G en
%F SM_1991_68_1_a4
Yu. N. Drozhzhinov; B. I. Zavialov. Multidimensional Abelian and Tauberian comparison theorems. Sbornik. Mathematics, Tome 68 (1991) no. 1, pp. 85-110. http://geodesic.mathdoc.fr/item/SM_1991_68_1_a4/