On an integral equation for the Dirichlet problem in a~plane domain with cusps on the boundary
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 68 (1991) no. 1, pp. 61-83
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Integral equations for the Dirichlet problem for the Laplace operator are studied in a plane domain whose boundary has interior or exterior peaks with tangency of first order. Theorems on unique solvability and asymptotics of solutions near the peaks are presented. 
Bibliography: 8 titles.
			
            
            
            
          
        
      @article{SM_1991_68_1_a3,
     author = {V. G. Maz'ya and A. A. Soloviev},
     title = {On an integral equation for the {Dirichlet} problem in a~plane domain with cusps on the boundary},
     journal = {Sbornik. Mathematics},
     pages = {61--83},
     publisher = {mathdoc},
     volume = {68},
     number = {1},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_68_1_a3/}
}
                      
                      
                    TY - JOUR AU - V. G. Maz'ya AU - A. A. Soloviev TI - On an integral equation for the Dirichlet problem in a~plane domain with cusps on the boundary JO - Sbornik. Mathematics PY - 1991 SP - 61 EP - 83 VL - 68 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1991_68_1_a3/ LA - en ID - SM_1991_68_1_a3 ER -
V. G. Maz'ya; A. A. Soloviev. On an integral equation for the Dirichlet problem in a~plane domain with cusps on the boundary. Sbornik. Mathematics, Tome 68 (1991) no. 1, pp. 61-83. http://geodesic.mathdoc.fr/item/SM_1991_68_1_a3/
