The Cauchy problem for odd-order quasilinear equations
Sbornik. Mathematics, Tome 68 (1991) no. 1, pp. 31-59 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A nonlocal Cauchy problem for multidimensional quasilinear evolution equations containing a linear differential operator $L(t,x,D_x)$ with leading derivatives of odd order is considered. The conditions on the nonlinear terms are chosen so that they are subordinate to the operator $L$. The Korteweg–de Vries equation is a special case of such equations. No smoothness conditions are imposed on the initial function $u_0(x)$ $(u_0(x)\in L_2(\mathbf R^n))$. Theorems on the existence, uniqueness, and continuous dependence on the initial data of generalized solutions are established. Bibliography: 20 titles.
@article{SM_1991_68_1_a2,
     author = {A. V. Faminskii},
     title = {The {Cauchy} problem for odd-order quasilinear equations},
     journal = {Sbornik. Mathematics},
     pages = {31--59},
     year = {1991},
     volume = {68},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_68_1_a2/}
}
TY  - JOUR
AU  - A. V. Faminskii
TI  - The Cauchy problem for odd-order quasilinear equations
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 31
EP  - 59
VL  - 68
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1991_68_1_a2/
LA  - en
ID  - SM_1991_68_1_a2
ER  - 
%0 Journal Article
%A A. V. Faminskii
%T The Cauchy problem for odd-order quasilinear equations
%J Sbornik. Mathematics
%D 1991
%P 31-59
%V 68
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1991_68_1_a2/
%G en
%F SM_1991_68_1_a2
A. V. Faminskii. The Cauchy problem for odd-order quasilinear equations. Sbornik. Mathematics, Tome 68 (1991) no. 1, pp. 31-59. http://geodesic.mathdoc.fr/item/SM_1991_68_1_a2/

[1] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevskii L. P., Teoriya solitonov: Metod obratnoi zadachi, Nauka, M., 1980 | MR

[2] Kruzhkov S. N., Faminskii A. V., “Obobschennye resheniya zadachi Koshi dlya uravneniya Kortevega–de Friza”, Matem. sb., 120(162) (1983), 396–425 | MR | Zbl

[3] Faminskii A. V., “O zadache Koshi i smeshannoi zadache v polupolose dlya uravnenii tipa Kortevega–de Friza”, Dinamika sploshnoi sredy, no. 63, Izd-vo SO AN SSSR, Novosibirsk, 1983, 152–158 | MR

[4] Faminskii A. V., “Zadacha Koshi dlya uravneniya Kortevega–de Friza i ego obobschenii”, Tr. seminara im. I. G. Petrovskogo, 13 (1988), 56–105 | Zbl

[5] Guo Boling, “The global solution for a class of the generalized KdV equations”, Shusyue syuebao. Acta Math Sin., 25:6 (1982), 641–656 | MR | Zbl

[6] Kato T., “On the Cauchy problem for the (generalized) Korteweg–de Vries equation”, Studies in Appl. Math. Adv. in Math. Suppl. Stud., 8, Academic Press, N. Y., London, 1983, 93–128 | MR

[7] Zhidkov E. P., Kirchev K. P., “Zadacha Koshi dlya modifitsirovannogo uravneniya Kortevega–de Friza s nachalnymi dannymi tipa stupenki”, Sib. matem. zhurn., 25:5 (1984), 30–41 | MR | Zbl

[8] Cohen A., “Solutions of the Korteweg–de Vries equation with steplike initial profile”, Comm. Part. Diff. Eq., 9:8 (1984), 751–806 | DOI | MR | Zbl

[9] Bondareva I. N., Shubin M. A., “O edinstvennosti resheniya zadachi Koshi dlya uravneniya Kortevega–de Friza v klassakh rastuschikh funktsii”, Vestn. MGU. Ser. 1. Matematika. mekhanika, 1985, no. 3, 35–38 | MR

[10] Sachs R. L., “Classical solutions of the Korteweg–de Vries equation for non-smooth initial data via inverse scattering”, Comm. Part. Diff. Eq., 10:1 (1985), 29–98 | DOI | MR | Zbl

[11] Bona J., Saut J. C., “Singularities dispersives de solutions d'equation de type Korteweg–de Vries”, C. r. Acad. Sci. Ser. 1, 303:4 (1986), 101–103 | MR | Zbl

[12] Kappeler T., “Solutions to the Korteweg–de Vries equation with irregular initial profile”, Comm. Part. Diff. Eq., 11:9 (1986), 927–945 | DOI | MR | Zbl

[13] Saut J.-C., “Sur quelques generalizations de l'equation de Korteweg–de Vries”, J. Math. Pures Appl., 58:1 (1979), 21–61 | MR | Zbl

[14] Gindikin S. G., “Differentsialnye operatory s veschestvennymi kharakteristikami vysokogo poryadka”, DAN SSSR, 204:5 (1972), 1037–1040 | MR | Zbl

[15] Volevich L. R., Gindikin S. G., “Metod energeticheskikh otsenok v smeshannoi zadache”, UMN, 35:5 (1980), 53–120 | MR | Zbl

[16] Volevich L. R., Gindikin S. G., “Smeshannaya zadacha dlya $(2b+1)$-giperbolicheskikh uravnenii”, Trudy MMO, 43 (1981), 197–259 | MR | Zbl

[17] Mizokhata S., Teoriya uravnenii s chastnymi proizvodnymi, Mir, M., 1977

[18] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967

[19] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR

[20] Galyardo E., “Svoistva nekotorykh klassov funktsii mnogikh peremennykh”, Matematika (sb. perevodov), 5:4 (1961), 87–116