The Cauchy problem for odd-order quasilinear equations
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 68 (1991) no. 1, pp. 31-59
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A nonlocal Cauchy problem for multidimensional quasilinear evolution equations containing a linear differential operator $L(t,x,D_x)$ with leading derivatives of odd order is considered. The conditions on the nonlinear terms are chosen so that they are subordinate to the operator $L$. The Korteweg–de Vries equation is a special case of such equations. No smoothness conditions are imposed on the initial function $u_0(x)$ $(u_0(x)\in L_2(\mathbf R^n))$. Theorems on the existence, uniqueness, and continuous dependence on the initial data of generalized solutions are established. 
Bibliography: 20 titles.
			
            
            
            
          
        
      @article{SM_1991_68_1_a2,
     author = {A. V. Faminskii},
     title = {The {Cauchy} problem for odd-order quasilinear equations},
     journal = {Sbornik. Mathematics},
     pages = {31--59},
     publisher = {mathdoc},
     volume = {68},
     number = {1},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_68_1_a2/}
}
                      
                      
                    A. V. Faminskii. The Cauchy problem for odd-order quasilinear equations. Sbornik. Mathematics, Tome 68 (1991) no. 1, pp. 31-59. http://geodesic.mathdoc.fr/item/SM_1991_68_1_a2/
