Modal companions of superintuitionistic logics: syntax, semantics, and preservation theorems
Sbornik. Mathematics, Tome 68 (1991) no. 1, pp. 277-289 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper studies the class $\mathscr I$ of superintuitionistic logics and the class $\mathscr M$ of normal extensions of the modal system S4, and the syntactic and semantic connections between the two classes, given by the mapping $\rho$ (which assigns to every modal logic its superintuitionistic fragment) and by the mappings $\tau$ and $\sigma$ (which assign to every superintuitionistic logic its smallest and its greatest companion, respectively). It is shown that from classes of relational models with respect to which a logic $L\in\mathscr I$ is complete, one can construct a class of models with respect to which the logics $\tau L$ and $\sigma L$ are complete. The relationship of inference (of canonical formulas) in logics $L$, $\tau L$ and $\sigma L$ is also described. As a consequence, preservation theorems are obtained for finite approximability, for Kripke completeness and for the disjunction property at the transition from $L$ to $\tau L$, and also for decidability at the transition to $\tau L$ and $\sigma L$. Bibliography: 21 titles.
@article{SM_1991_68_1_a13,
     author = {M. V. Zakharyaschev},
     title = {Modal companions of superintuitionistic logics: syntax, semantics, and preservation theorems},
     journal = {Sbornik. Mathematics},
     pages = {277--289},
     year = {1991},
     volume = {68},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_68_1_a13/}
}
TY  - JOUR
AU  - M. V. Zakharyaschev
TI  - Modal companions of superintuitionistic logics: syntax, semantics, and preservation theorems
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 277
EP  - 289
VL  - 68
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1991_68_1_a13/
LA  - en
ID  - SM_1991_68_1_a13
ER  - 
%0 Journal Article
%A M. V. Zakharyaschev
%T Modal companions of superintuitionistic logics: syntax, semantics, and preservation theorems
%J Sbornik. Mathematics
%D 1991
%P 277-289
%V 68
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1991_68_1_a13/
%G en
%F SM_1991_68_1_a13
M. V. Zakharyaschev. Modal companions of superintuitionistic logics: syntax, semantics, and preservation theorems. Sbornik. Mathematics, Tome 68 (1991) no. 1, pp. 277-289. http://geodesic.mathdoc.fr/item/SM_1991_68_1_a13/

[1] Novikov P. S., Konstruktivnaya matematicheskaya logika s tochki zreniya klassicheskoi, Nauka, M., 1977 | MR

[2] McKinsey J. C. C., Tarski A., “Some theorems about the sentential calculi of Lewis and Heyting”, J. Symb. Log., 13:1 (1948), 1–15 | DOI | MR | Zbl

[3] Dummeti M. A. E., Lemmon E. J., “Modal logics between $S4$ and $S5$”, Z. Math. Logik und Grundl. Math., 5:3/4 (1959), 250–264 | DOI | MR

[4] Grzegorczyk A., “Some relational systems and the associated topological spaces”, Fund. Math., 60 (1967), 223–231 | MR | Zbl

[5] Maksimova L. L., Rybakov V. V., “O reshetke normalnykh modalnykh logik”, Algebra i logika, 13:2 (1974), 188–216 | MR | Zbl

[6] Esakia L. L., “K teorii modalnykh i superintuitsionistskikh sistem”, Logicheskii vyvod, Nauka, M., 1979, 147–172 | MR

[7] Esakia L. L., “O modalnykh “naparnikakh” superintuitsionistskikh logik”, DSh Vsesoyuznyi simpozium po logike i metodologii nauki (Tezisy), Kiev, 1976, 135–136

[8] Zakharyaschev M. V., “Normalnye modalnye logiki, soderzhaschie $S4$”, DAN SSSR, 275:3 (1984), 537–540 | MR

[9] Gudovschikov V. L., Rybakov V. V., “Diz'yunktivnoe svoistvo v modalnykh logikakh”, Modalnye i intensionalnye logiki (Materialy k VIII Vsesoyuznoi konferentsii “Logika i metodologiya nauki” Vilnyus, 1982), IFAN, M., 1982, 35–36

[10] Shekhtman V. B., “Topologicheskie modeli propozitsionalnykh logik”, Semiotika i informatika, 15 (1980), 74–98 | MR | Zbl

[11] Zakharyaschev M. V., “O promezhutochnykh logikakh”, DAN SSSR, 269:1 (1983), 18–22 | MR

[12] Jonsson B., Tarski A., “Boolean algebras with operators”, American J. of Math., 73:4 (1951), 891–939 | DOI | MR | Zbl

[13] Raseva E., Sikorskii R., Matematika metamatematiki, Nauka, M., 1972 | MR

[14] Maksimova L. L., “Predtablichnye rasshireniya logiki $S4$ Lyuisa”, Algebra i logika, 14:1 (1975), 28–55 | MR | Zbl

[15] Maksimova L. L., “Modalnye logiki konechnykh sloev”, Algebra i logika, 14:3 (1975), 304–314 | MR

[16] Zakharyaschev M. V., “O diz'yunktivnom svoistve superintuitsionistskikh i modalnykh logik”, Matem. zametki, 42:5 (1987), 729–738 | MR

[17] Esakia L. L., “O mnogoobrazii algebr Gzhegorchika”, Issledovaniya po neklassicheskim logikam i teorii mnozhestv, Nauka, M., 1979, 257–287 | MR

[18] Maksimova L. L., “On maximal intermediate logics with the disjunction property”, Studia Logica, XLV:1 (1986), 69–75 | DOI | MR

[19] Rybakov V. V., “Nekompaktnye rasshireniya logiki $S4$”, Algebra i logika, 16:4 (1977), 472–490 | MR | Zbl

[20] Bull R. A., “That all normal extensions of $S4.3$ have the finite model property”, Z. Math. Logik und Grundl. Math., 12 (1966), 341–344 | DOI | MR | Zbl

[21] Rybakov V. V., “Nasledstvenno konechno-aksiomatiziruemye rasshireniya logiki $S4$”, Algebra i logika, 15:2 (1976), 185–204 | MR | Zbl