Irreducible orthogonal decompositions in Lie~algebras
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 68 (1991) no. 1, pp. 257-275
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The weakened Winnie-the-Pooh problem on irreducible orthogonal decompositions (IOD's) of a simple finite-dimensional complex Lie algebra $\mathscr L$ (i.e., orthogonal decompositions of $\mathscr L$ whose automorphism group acts on $\mathscr L$ absolutely irreducibly is solved). It is proved that Lie algebras of types $A_{p-2}$ ($p$ a prime number, $p\ne2^d+1$), $C_3$ and $E_7$ have no IOD's. All IOD's of Lie algebras of types $A_{p-1}$ ($p$ is a prime number), $G_2$, $F_4$, $E_6$ and $E_8$ are found.
Bibliography: 25 titles.
			
            
            
            
          
        
      @article{SM_1991_68_1_a12,
     author = {Pham Huu Tiep},
     title = {Irreducible orthogonal decompositions in {Lie~algebras}},
     journal = {Sbornik. Mathematics},
     pages = {257--275},
     publisher = {mathdoc},
     volume = {68},
     number = {1},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_68_1_a12/}
}
                      
                      
                    Pham Huu Tiep. Irreducible orthogonal decompositions in Lie~algebras. Sbornik. Mathematics, Tome 68 (1991) no. 1, pp. 257-275. http://geodesic.mathdoc.fr/item/SM_1991_68_1_a12/
