Irreducible orthogonal decompositions in Lie algebras
Sbornik. Mathematics, Tome 68 (1991) no. 1, pp. 257-275 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The weakened Winnie-the-Pooh problem on irreducible orthogonal decompositions (IOD's) of a simple finite-dimensional complex Lie algebra $\mathscr L$ (i.e., orthogonal decompositions of $\mathscr L$ whose automorphism group acts on $\mathscr L$ absolutely irreducibly is solved). It is proved that Lie algebras of types $A_{p-2}$ ($p$ a prime number, $p\ne2^d+1$), $C_3$ and $E_7$ have no IOD's. All IOD's of Lie algebras of types $A_{p-1}$ ($p$ is a prime number), $G_2$, $F_4$, $E_6$ and $E_8$ are found. Bibliography: 25 titles.
@article{SM_1991_68_1_a12,
     author = {Pham Huu Tiep},
     title = {Irreducible orthogonal decompositions in {Lie~algebras}},
     journal = {Sbornik. Mathematics},
     pages = {257--275},
     year = {1991},
     volume = {68},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_68_1_a12/}
}
TY  - JOUR
AU  - Pham Huu Tiep
TI  - Irreducible orthogonal decompositions in Lie algebras
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 257
EP  - 275
VL  - 68
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1991_68_1_a12/
LA  - en
ID  - SM_1991_68_1_a12
ER  - 
%0 Journal Article
%A Pham Huu Tiep
%T Irreducible orthogonal decompositions in Lie algebras
%J Sbornik. Mathematics
%D 1991
%P 257-275
%V 68
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1991_68_1_a12/
%G en
%F SM_1991_68_1_a12
Pham Huu Tiep. Irreducible orthogonal decompositions in Lie algebras. Sbornik. Mathematics, Tome 68 (1991) no. 1, pp. 257-275. http://geodesic.mathdoc.fr/item/SM_1991_68_1_a12/

[1] Kostrikin A. I., Kostrikin I. A., Ufnarovskii V. A., “O razlozheniyakh klassicheskikh algebr Li”, Tr. MIAN, 166 (1984), 107–122 | MR | Zbl

[2] Kostrikin A. I., Kostrikin I. A., Ufnarovskii V. A., K voprosu ob odnoznachnosti ortogonalnykh razlozhenii algebr Li tipov $A_n$ i $C_n$, Issledovaniya po algebre i topologii. Matematicheskie issledovaniya, 74, Shtiintsa, Kishinev, 1983

[3] Kostrikin A. I., Kostrikin I. A., Ufnarovskii V. A., K voprosu ob odnoznachnosti ortogonalnykh razlozhenii algebr Li tipov $A_n$ i $C_n$. II, Issledovaniya po algebre i topologii. Matematicheskie issledovaniya, 74, Shtiintsa, Kishinev, 1983

[4] Ivanov D. N., “Ortogonalnye razlozheniya algebr Li tipov $A_{p^n-1}$ i izotropnye rassloeniya”, UMN, 42:4 (1987), 187–188 | MR | Zbl

[5] Ivanov D. N., “Ortogonalnye razlozheniya algebr Li tipa $A_{p^n-1}$ i $D_n$ s konechnym chislom klassov podobnykh invariantnykh podreshetok”, Vest. MGU. Ser. 1. Matematika. Mekhanika, 1989, no. 2, 40–43 | MR | Zbl

[6] Kostrikin A. I., Kostrikin I. A., Ufnarovskii V. A., “Invariantnye reshetki tipa $G_2$ i ikh gruppy avtomorfizmov”, Tr. MIAN, 165 (1984), 79–97 | MR | Zbl

[7] Bondal A. I., Kostrikin A. I., Fam Khyu Tep, “Invariantnye reshetki, reshetka Licha i ee chetnye unimodulyarnye analogi v algebrakh $A_{p-1}$”, Matem. sb., 130(172) (1986), 435–464 | MR | Zbl

[8] Alekseevskii A. V., “O zhordanovykh konechnykh kommutativnykh podgruppakh prostykh kompleksnykh grupp Li”, Funktsion. analiz i ego pril., 8:4 (1974), 1–4 | MR | Zbl

[9] Burichenko V. P., “Tranzitivnye ortogonalnye razlozheniya prostykh kompleksnykh algebr Li tipov $F_4$ i $E_6$”, Vestn. MGU. Ser. 1. Matematika, mekhanika, 1988, no. 4, 78–80 | MR

[10] Borovik A. V., “Zhordanovy podgruppy i ortogonalnye razlozheniya”, Algebra i logika, 27 (1988)

[11] Teoriya algebr Li. Topologiya grupp Li, IL, M., 1962

[12] Kac V. G., Infinite dimensional Lie algebras. An Introduction, Birkhäuser, Basel, Boston, Stuttgart, 1983 | MR | Zbl

[13] Seminar po algebraicheskim gruppam, Mir, M., 1973 | MR

[14] Cohen A. M., Seitz G. M., The $r$-rank of groups of exceptional Lie type, Preprint. Centrum voor Wiskunde en Informaica. PM-R8607, 1986 | MR

[15] Huppert B., Endliche Gruppen. I, Springer-Verlag, Berlin, 1967 | MR | Zbl

[16] Kameron P. Dzh., “Konechnye gruppy podstanovok i konechnye prostye gruppy”, UMN, 38 (1983), 135–157

[17] Gorenstein D., Konechnye prostye gruppy. Vvedenie v ikh klassifikatsiyu, Mir, M., 1985 | MR | Zbl

[18] Cohen A. M., Griess R. L., “On finite simple subgroups of the complex Lie group of type $E_8$”, Proc. Symp. Pure Math., 47 (1987), 367–405 | MR | Zbl

[19] Gorenstein D., Finite groups, Hanper and Row, New York, 1968 | MR

[20] Dedonne Zh., Geometriya klassicheskikh grupp, Mir, M., 1974 | MR

[21] Wielandt H., Finite permutation groups, Academic Press, N. Y., London, 1964 | MR | Zbl

[22] Curtis W., Cantor W. M, Seitz G. M., “The $2$-transitive permutation representations of the finite Chevallev groups”, Trans. Amer. Math. Soc., 218:1 (1976), 1–59 | DOI | MR | Zbl

[23] Conway J. H., Curtis R. T., Norton S. P., Parker R. A., Wilson R. A., An ATLAS of finite groups, Clasendon Press, Oxford, 1985 | MR | Zbl

[24] Griess R. L., Jr., “On a subgroup of order $2^{15}|GL(5,2)|$ in $E_8(\mathbf{C})$, the Dempwolff group and $\operatorname{Aut}(D_8\circ D_8\circ D_8)$”, J. Algebra, 40:1 (1976), 271–279 | DOI | MR | Zbl

[25] Dempwolff U., “On extensions of an elementary abelian group of order $2^5$ by $GL(5,2)$”, Rend. Sem. Math. Univ. Padova, 48 (1972), 359–364 (1973) | MR