Irreducible orthogonal decompositions in Lie~algebras
Sbornik. Mathematics, Tome 68 (1991) no. 1, pp. 257-275

Voir la notice de l'article provenant de la source Math-Net.Ru

The weakened Winnie-the-Pooh problem on irreducible orthogonal decompositions (IOD's) of a simple finite-dimensional complex Lie algebra $\mathscr L$ (i.e., orthogonal decompositions of $\mathscr L$ whose automorphism group acts on $\mathscr L$ absolutely irreducibly is solved). It is proved that Lie algebras of types $A_{p-2}$ ($p$ a prime number, $p\ne2^d+1$), $C_3$ and $E_7$ have no IOD's. All IOD's of Lie algebras of types $A_{p-1}$ ($p$ is a prime number), $G_2$, $F_4$, $E_6$ and $E_8$ are found. Bibliography: 25 titles.
@article{SM_1991_68_1_a12,
     author = {Pham Huu Tiep},
     title = {Irreducible orthogonal decompositions in {Lie~algebras}},
     journal = {Sbornik. Mathematics},
     pages = {257--275},
     publisher = {mathdoc},
     volume = {68},
     number = {1},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_68_1_a12/}
}
TY  - JOUR
AU  - Pham Huu Tiep
TI  - Irreducible orthogonal decompositions in Lie~algebras
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 257
EP  - 275
VL  - 68
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1991_68_1_a12/
LA  - en
ID  - SM_1991_68_1_a12
ER  - 
%0 Journal Article
%A Pham Huu Tiep
%T Irreducible orthogonal decompositions in Lie~algebras
%J Sbornik. Mathematics
%D 1991
%P 257-275
%V 68
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1991_68_1_a12/
%G en
%F SM_1991_68_1_a12
Pham Huu Tiep. Irreducible orthogonal decompositions in Lie~algebras. Sbornik. Mathematics, Tome 68 (1991) no. 1, pp. 257-275. http://geodesic.mathdoc.fr/item/SM_1991_68_1_a12/