Some extremal problems on classes of functions determined by linear differential operators
Sbornik. Mathematics, Tome 68 (1991) no. 1, pp. 213-255 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article takes up the problems of best quadrature formulas, optimal recovery methods, and widths. Some classical inequalities for derivatives on classes of functions determined by differential polynomials with real coefficients are generalized. Bibliography: 41 titles.
@article{SM_1991_68_1_a11,
     author = {Nguy\^en Thị Thi\^eu Hoa},
     title = {Some extremal problems on classes of functions determined by linear differential operators},
     journal = {Sbornik. Mathematics},
     pages = {213--255},
     year = {1991},
     volume = {68},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_68_1_a11/}
}
TY  - JOUR
AU  - Nguyên Thị Thiêu Hoa
TI  - Some extremal problems on classes of functions determined by linear differential operators
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 213
EP  - 255
VL  - 68
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1991_68_1_a11/
LA  - en
ID  - SM_1991_68_1_a11
ER  - 
%0 Journal Article
%A Nguyên Thị Thiêu Hoa
%T Some extremal problems on classes of functions determined by linear differential operators
%J Sbornik. Mathematics
%D 1991
%P 213-255
%V 68
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1991_68_1_a11/
%G en
%F SM_1991_68_1_a11
Nguyên Thị Thiêu Hoa. Some extremal problems on classes of functions determined by linear differential operators. Sbornik. Mathematics, Tome 68 (1991) no. 1, pp. 213-255. http://geodesic.mathdoc.fr/item/SM_1991_68_1_a11/

[1] Nikolskii S. M., Kvadraturnye formuly, Nauka, M., 1988 | MR

[2] Tikhomirov V. M., Boyanov B. D., “O nekotorykh vypuklykh zadachakh teorii priblizhenii”, Serdika B'lgarsko matem. spisanie, 5 (1979), 83–96 | MR | Zbl

[3] Boyanov B. D., Optimalno v'zstnovyavanie na funktsii i funktsionali, Dis. ... dokt. matem. nauk, Sofiiskii un-t, Sofiya, 1980

[4] Korneichuk N. P., Tochnye konstanty v teorii priblizheniya, Nauka, M., 1987 | MR

[5] Oskolkov K. I., “Ob optimalnosti kvadraturnoi formuly s ravnostoyaschimi uzlami na klassakh periodicheskikh funktsii”, DAN SSSR, 249:1 (1979), 49–52 | MR

[6] Chakhkiev M. A., “Lineinye differentsialnye operatory s veschestvennym spektrom i optimalnye kvadraturnye formuly”, Izv. AN SSSR, 48 (1984), 1078–1108 | MR | Zbl

[7] Babenko V. F., Grankina T. A., “O nailuchshikh kvadraturnykh formulakh na klassakh svertok s $O(M\Delta)$-yadrami”, Issledovanie po sovremennym problemam summirovaniya i priblizheniya funktsii i ikh prilozheniyam, 1982, 6–13, DGU, Dnepropetrovsk

[8] Nguen Tkhi Tkheu Khoa, UMN, 39:2 (1984), 177–178 | MR

[9] Nguen Tkhi Tkheu Khoa, “Nailuchshie kvadraturnye formuly i metody vosstanovleniya funktsii, opredelyaemykh yadrami, ne uvelichivayuschimi ostsillyatsiyu”, Matem. sb., 130(172) (1986), 105–119 | MR | Zbl

[10] Nakonechnaya T. V., O vosstanovlenii na klassakh svertok, RZh MAT 5B100 DEP., 1985

[11] Krein M. G., “K teorii nailuchshego priblizheniya periodicheskikh funktsii”, DAN SSSR, 18:4–5 (1938), 245–251

[12] Pinkus A., $n$-width in approximation theory, Springer-Verlag, Berlin, 1985 | MR

[13] Shevaldin V. T., “$L$-splainy i poperechniki”, Matem. zametki, 33:5 (1983), 735–744 | MR | Zbl

[14] Volodina I. N., “Exact value of widths of certain class of solutions of linear differential equations”, Analysis Math., 11:1 (1985), 85–92 | DOI | MR | Zbl

[15] Novikov S. I., “Poperechniki odnogo klassa periodicheskikh funktsii, opredelyaemogo differentsialnym operatorom”, Matem. zametki, 42:2 (1987), 194–206 | MR

[16] Nguen Tkhi Tkheu Khoa, “Teorema Rollya dlya differentsialnykh operatorov i nekotorye ekstremalnye zadachi teorii priblizhenii”, DAN SSSR, 295:6 (1987), 1313–1318

[17] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976 | MR

[18] Schoenberg I. J., “On variation diminishing integral operators of the convolution type”, Proc. Nat. Acad. Sci. U. S. A., 34 (1984), 164–169 | DOI | MR

[19] Mairhuber J. C., Schoenberg I. J., Williamson R. E., “On variation diminishing transformations of the circle”, Rend. Circ. Mat. Palermo, 8 (1959), 241–270 | DOI | MR | Zbl

[20] Karlin S., Total positivity, Stanford Univ., Stanford, 1968 | MR

[21] Polia G., Segë G., Zadachi i teoremy iz analiza, t. 2, Nauka, M., 1978

[22] Krein M. G., Nudelman A. A., Problema momentov Markova i ekstremalnye zadachi, Nauka, M., 1973 | MR

[23] Dzyadyk V. K., Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977 | MR | Zbl

[24] Akhiezer N. I., Lektsii po teorii approksimatsii, Nauka, M., 1967

[25] Ogiewetzki I. I., “Generalization of the inequality of P. Civin”, Acta Math. Acad. Sci. Hung., 9 (1958), 133–135 | DOI | MR

[26] Favard J., “Sur les meilleures procedes d'approximation de certains classes de functions par des polynomes trigonometriques”, Bul. Sci. Math., 61 (1937), 209–224 | Zbl

[27] Akhiezer H. I. Krein M. G., “O nailuchshem priblizhenii trigonometricheskimi summami differentsiruemykh periodicheskikh funktsii”, DAN SSSR, 15:3 (1937), 107–112

[28] Akhiezer N. I., “O nailuchshem priblizhenii odnogo klassa nepreryvnykh periodicheskikh funktsii”, DAN SSSR, 17:9 (1937), 451–453

[29] Tikhomirov V. M., Nekotorye voprosy teorii priblizhenii, Izd-vo MGU, M., 1976 | MR

[30] Nguen Tkhi Tkheu Khoa, “Ob odnoi ekstremalnoi zadache dlya klassov svertok, ne uvelichivayuschikh ostsillyatsiyu”, Vestn. MGU. Ser. 1. Matematika. Mekhanika, 1982, no. 5, 3–7 | MR

[31] Nguen Tkhi Tkheu Khoa, “Neravenstvo Kolmogorova dlya differentsialnykh operatorov”, Vestn. MGU. Ser. 1. Matematika. Mekhanika, 1987, no. 1, 17–21

[32] Stein E. M., “Functions of exponential type”, Ann. Math., 65:3 (1957), 582–592 | DOI | MR | Zbl

[33] Tikhomirov V. M., “Teoriya priblizhenii”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 14, VINITI, M., 1987, 103–260 | MR

[34] Motornyi V. P., “O nailuchshei kvadraturnoi formule vida $\sum_{i=1}^np_if(x_i)$ dlya nekotorykh klassov periodicheskikh differentsiruemykh funktsii”, Izv. AN SSSR. Ser. matem., 38 (1974), 583–614 | MR | Zbl

[35] Zhensykbaev A. A., “Monosplainy minimalnoi normy i nailuchshie kvadraturnye formuly”, UMN, 36:4 (1981), 107–159 | MR | Zbl

[36] Nguen Tkhi Tkheu Khoa, Nailuchshie kvadraturnye formuly i metody vosstanovleniya na klassakh funktsii, zadavaemykh svertkami, ne uvelichivayuschimi ostsillyatsiyu, Dis. ... kand. fiz.-matem. nauk, MGU, M., 1985

[37] Tikhomirov V. M., “Nailuchshie metody priblizheniya i interpolirovaniya differentsiruemykh funktsii v prostranstve $C[-1,1]$”, Matem. sb., 80(122) (1969), 290–304 | Zbl

[38] Favard J., “Sur e'interpolation”, J. Math. Pures Appl., 19 (1940), 281–306 | MR | Zbl

[39] Smolyak S. A., Ob odnom optimalnom vosstanovlenii funktsii i funktsionalov ot nikh, Dis. ... kand. fiz.-matem. nauk, MGU, M., 1965

[40] Shevaldin V. T., “Nekotorye zadachi ekstremalnoi interpolyatsii v srednem dlya lineinykh differentsialnykh operatorov”, Tr. MIAN, 164 (1983), 203–240 | MR | Zbl

[41] Vallee Poussin Ch. J., “Sur e'eqiiation differentielle du second ordre. Determination d'une integrate par deux valeurs assignees. Extension aux equations dorden”, J. Math. Pure et Appl., 8 (1929), 125–144 | Zbl