On a~class of exceptional sets in the theory of conformal mappings
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 68 (1991) no. 1, pp. 19-30
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A subset $E$ of the unit circle $\partial\mathbf D$ is called an $L$-set if there exists a function univalent in the disc $\mathbf D$ mapping $E$ to a set of zero linear measure. Metric properties of $L$-sets are studied, and related problems of the radial behavior of Bloch functions are also considered. 
Bibliography: 11 titles.
			
            
            
            
          
        
      @article{SM_1991_68_1_a1,
     author = {N. G. Makarov},
     title = {On a~class of exceptional sets in the theory of conformal mappings},
     journal = {Sbornik. Mathematics},
     pages = {19--30},
     publisher = {mathdoc},
     volume = {68},
     number = {1},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_68_1_a1/}
}
                      
                      
                    N. G. Makarov. On a~class of exceptional sets in the theory of conformal mappings. Sbornik. Mathematics, Tome 68 (1991) no. 1, pp. 19-30. http://geodesic.mathdoc.fr/item/SM_1991_68_1_a1/
