On a class of exceptional sets in the theory of conformal mappings
Sbornik. Mathematics, Tome 68 (1991) no. 1, pp. 19-30 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A subset $E$ of the unit circle $\partial\mathbf D$ is called an $L$-set if there exists a function univalent in the disc $\mathbf D$ mapping $E$ to a set of zero linear measure. Metric properties of $L$-sets are studied, and related problems of the radial behavior of Bloch functions are also considered. Bibliography: 11 titles.
@article{SM_1991_68_1_a1,
     author = {N. G. Makarov},
     title = {On a~class of exceptional sets in the theory of conformal mappings},
     journal = {Sbornik. Mathematics},
     pages = {19--30},
     year = {1991},
     volume = {68},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_68_1_a1/}
}
TY  - JOUR
AU  - N. G. Makarov
TI  - On a class of exceptional sets in the theory of conformal mappings
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 19
EP  - 30
VL  - 68
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1991_68_1_a1/
LA  - en
ID  - SM_1991_68_1_a1
ER  - 
%0 Journal Article
%A N. G. Makarov
%T On a class of exceptional sets in the theory of conformal mappings
%J Sbornik. Mathematics
%D 1991
%P 19-30
%V 68
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1991_68_1_a1/
%G en
%F SM_1991_68_1_a1
N. G. Makarov. On a class of exceptional sets in the theory of conformal mappings. Sbornik. Mathematics, Tome 68 (1991) no. 1, pp. 19-30. http://geodesic.mathdoc.fr/item/SM_1991_68_1_a1/

[1] Karleson L., Izbrannye problemy teorii isklyuchitelnykh mnozhestv, Mir, M., 1971 | MR | Zbl

[2] Lavrentev M. A., “Granichnye zadachi v teorii odnolistnykh funktsii”, Matem. sb., 1 (1936), 815–846 | Zbl

[3] Landkof N. S., Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966 | MR | Zbl

[4] Khruschev S. V., “Problema odnovremennoi approksimatsii i stiranie osobennostei integrala tipa Koshi”, Tr. MIAN, 130 (1978), 124–195

[5] Ahlfors L., Beurling A., “Conformal invariants and function-theoretic null-sets”, Acta Math., 83 (1950), 101–129 | DOI | MR | Zbl

[6] Kahane J.-P., “Trois notes sur les ensembles parfaits lineaires”, Enseignement Math., 15 (1969), 185–192 | MR

[7] Makarov N. G., “On the distortion of boundary sets under conformal mappings”, Proc. London Math. Soc. (3), 51 (1985), 369–384 | DOI | MR | Zbl

[8] Makarov N. G., On the harmonic measure of the snowflake, LOMI Preprints. No E-4-86, 1986

[9] Makarov N. G., LIL for smooth measures, LOMI Preprints. No E-3-88, 1988 | MR

[10] McMillan J., Piranian G., “Compression and expansion of boundary sets”, Duke Math. J., 40 (1973), 599–605 | DOI | MR | Zbl

[11] Pommerenke Ch., “The growth of the derivative of a univalent function”, Math. Surveys and Monographs, 1986, no. 21, 143–152 | MR