Torsion-free Abelian groups of rank 3
Sbornik. Mathematics, Tome 68 (1991) no. 1, pp. 1-17 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Torsion-free Abelian groups similar in properties to torsion-free Abelian groups of rank 3, in particular the groups of rank 3 themselves, can be characterized up to quasi-isomorphism by means of certain invariants. From the invariants of each such group one can compute invariants of its pure subgroups and invariants of its factor-groups modulo its pure subgroups. Bibliography: 11 titles.
@article{SM_1991_68_1_a0,
     author = {A. A. Fomin},
     title = {Torsion-free {Abelian} groups of rank~3},
     journal = {Sbornik. Mathematics},
     pages = {1--17},
     year = {1991},
     volume = {68},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_68_1_a0/}
}
TY  - JOUR
AU  - A. A. Fomin
TI  - Torsion-free Abelian groups of rank 3
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 1
EP  - 17
VL  - 68
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1991_68_1_a0/
LA  - en
ID  - SM_1991_68_1_a0
ER  - 
%0 Journal Article
%A A. A. Fomin
%T Torsion-free Abelian groups of rank 3
%J Sbornik. Mathematics
%D 1991
%P 1-17
%V 68
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1991_68_1_a0/
%G en
%F SM_1991_68_1_a0
A. A. Fomin. Torsion-free Abelian groups of rank 3. Sbornik. Mathematics, Tome 68 (1991) no. 1, pp. 1-17. http://geodesic.mathdoc.fr/item/SM_1991_68_1_a0/

[1] Baer R., “Abelian groups without elements of finite order”, Duke Math. J., 3:1 (1937), 68–122 | DOI | MR | Zbl

[2] Beaumont R., Pierce R., “Torsion-Free Groups of Rank Two”, Mem. Amer. Math. Soc., 38:1 (1961), 1–41 | MR

[3] Burkhardt R., Mutzbauer O., “Decomposition of torsion free abelian groups of rank $3$” (Basel), Arch. Math., 35:6 (1980), 501–504 | DOI | MR | Zbl

[4] Kravchenko A. A., “Ob izomorfizme $N$-vysokikh grupp”, Abelevy gruppy i moduli, 1984, 24–39, Izd-vo Tomsk. un-ta, Tomsk | MR

[5] Fomin A. A., “Servantno svobodnye gruppy”, Abelevy gruppy i moduli, 6 (1986), 145–164, Izd-vo Tomsk. un-ta, Tomsk

[6] Fomin A. A., “Invarianty i dvoistvennost v nekotorykh klassakh abelevykh grupp bez krucheniya konechnogo ranga”, Algebra i logika, 26:1 (1987), 63–83 | MR

[7] Fomin A. A., “Abelevy gruppy s odnim $\tau$-adicheskim sootnosheniem”, Algebra i logika, 28:1 (1989), 83–104 | Zbl

[8] Fomin A. A., O module $\tau$-sootnoshenii abelevoi gruppy bez krucheniya konechnogo ranga, Problemy chistoi i prikladnoi matematiki, Prioksk. kn. izd-vo, Tula, 1988

[9] Richman F., “A class of rank $2$ torsion free groups”, Studies on Abelian Groups, Springer, Paris, 1968, 327–333 | MR

[10] Warfield R., “Homomorphisms and duality for torsion free groups”, Math. Z., 107 (1968), 189–200 | DOI | MR | Zbl

[11] Arnold D., Vinsonhaler C., “Typesets and cotypesets of rank-$2$ torsion free abelian groups”, Pacific J. Math., 114:1 (1984), 1–21 | MR | Zbl