Torsion-free Abelian groups of rank~3
Sbornik. Mathematics, Tome 68 (1991) no. 1, pp. 1-17

Voir la notice de l'article provenant de la source Math-Net.Ru

Torsion-free Abelian groups similar in properties to torsion-free Abelian groups of rank 3, in particular the groups of rank 3 themselves, can be characterized up to quasi-isomorphism by means of certain invariants. From the invariants of each such group one can compute invariants of its pure subgroups and invariants of its factor-groups modulo its pure subgroups. Bibliography: 11 titles.
@article{SM_1991_68_1_a0,
     author = {A. A. Fomin},
     title = {Torsion-free {Abelian} groups of rank~3},
     journal = {Sbornik. Mathematics},
     pages = {1--17},
     publisher = {mathdoc},
     volume = {68},
     number = {1},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1991_68_1_a0/}
}
TY  - JOUR
AU  - A. A. Fomin
TI  - Torsion-free Abelian groups of rank~3
JO  - Sbornik. Mathematics
PY  - 1991
SP  - 1
EP  - 17
VL  - 68
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1991_68_1_a0/
LA  - en
ID  - SM_1991_68_1_a0
ER  - 
%0 Journal Article
%A A. A. Fomin
%T Torsion-free Abelian groups of rank~3
%J Sbornik. Mathematics
%D 1991
%P 1-17
%V 68
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1991_68_1_a0/
%G en
%F SM_1991_68_1_a0
A. A. Fomin. Torsion-free Abelian groups of rank~3. Sbornik. Mathematics, Tome 68 (1991) no. 1, pp. 1-17. http://geodesic.mathdoc.fr/item/SM_1991_68_1_a0/