The word problem for solvable Lie algebras and groups
Sbornik. Mathematics, Tome 67 (1990) no. 2, pp. 489-525 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The variety of groups $Z\mathfrak N_2\mathfrak A$ is given by the identity $$ [[x_1,x_2],[x_3,x_4],[x_5,x_6],x_7]=1, $$ and the analogous variety of Lie algebras is given by the identity $$ (x_1x_2)(x_3x_4)(x_5x_6)x_7=0. $$ Previously the author proved the unsolvability of the word problem for any variety of groups (respectively: Lie algebras) containing $Z\mathfrak N_2\mathfrak A$, and its solvability for any subvariety of $\mathfrak N_2\mathfrak A$. Here the word problem is investigated in varieties of Lie algebras over a field of characteristic zero and in varieties of groups contained in $Z\mathfrak N_2\mathfrak A$. It is proved that in the lattice of subvarieties of $Z\mathfrak N_2\mathfrak A$ there exist arbitrary long chains in which the varieties with solvable and unsolvable word problems alternate. In particular, the variety $Z\mathfrak N_2\mathfrak A\frown\mathfrak N_2\mathfrak N_c$ has a solvable word problem for any $c$, while the variety $\mathfrak Y_2$, given within $Z\mathfrak N_2\mathfrak A$ by the identity $$ [[x_1,\dots,x_{2c+2}],[y_1,\dots,y_{2c+2}],[z_1,\dots,z_{2c}]]=1 $$ in the case of groups and by the identity $$ (x_1\dots x_{2c+2})(y_1\dots y_{2c+2})(z_1\dots z_{2c})=0 $$ in the case of Lie algebras, has an unsolvable word problem. It is also proved that in $Z\mathfrak N_2\mathfrak A$ there exists an infinite series of minimal varieties with an unsolvable word problem, i.e. varieties whose proper subvarieties all have solvable word problems. Bibliography: 17 titles.
@article{SM_1990_67_2_a9,
     author = {O. G. Kharlampovich},
     title = {The word problem for solvable {Lie~algebras} and groups},
     journal = {Sbornik. Mathematics},
     pages = {489--525},
     year = {1990},
     volume = {67},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1990_67_2_a9/}
}
TY  - JOUR
AU  - O. G. Kharlampovich
TI  - The word problem for solvable Lie algebras and groups
JO  - Sbornik. Mathematics
PY  - 1990
SP  - 489
EP  - 525
VL  - 67
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1990_67_2_a9/
LA  - en
ID  - SM_1990_67_2_a9
ER  - 
%0 Journal Article
%A O. G. Kharlampovich
%T The word problem for solvable Lie algebras and groups
%J Sbornik. Mathematics
%D 1990
%P 489-525
%V 67
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1990_67_2_a9/
%G en
%F SM_1990_67_2_a9
O. G. Kharlampovich. The word problem for solvable Lie algebras and groups. Sbornik. Mathematics, Tome 67 (1990) no. 2, pp. 489-525. http://geodesic.mathdoc.fr/item/SM_1990_67_2_a9/

[1] Levine H. A., “Nonexistence of global solutions to some properly and improperly posed problems of mathematical physics: the method of unbounded Fourier coefficients”, Math. Ann., 1975, no. 214, 205–220 | DOI | MR | Zbl

[2] Kurdyumov S. P., “Sobstvennye funktsii goreniya nelineinoi sredy i konstruktivnye zakony postroeniya ee organizatsii”, Sovremennye problemy matematicheskoi fiziki i vychislitelnoi matematiki, Nauka, M., 1982, 217–243 | MR

[3] Zmitrenko N. V., Kurdyumov S. P., Mikhailov A. P., “Teoriya rezhimov s obostreniem v szhimaemykh sredakh”, Itogi nauki i tekhniki. Sovr. probl. matem. Noveishie dostizheniya, 28, VINITI, M., 1986, 3–94 | MR

[4] Galaktionov V. A., Dorodnitsyn V. A., Elenin G. G., Kurdyumov S. P., Samarskii A. A., “Kvazilineinoe uravnenie teploprovodnosti s istochnikom: obostrenie, lokalizatsiya, simmetriya, tochnye resheniya, asimptotiki, struktury”, Itogi nauki i tekhniki. Sovr. probl. matem. Noveishie dostizheniya, 28, VINITI, M., 1986, 95–206 | MR

[5] Giga Y., Kohn R., “Characterizing blow-up using similarity variables”, Indiana Univ. Math. J., 36 (1987), 1–40 | DOI | MR | Zbl

[6] Samarskii A. A., Galaktionov V. A., Kurdyumov S. P., Mikhailov A. P., Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1987 | MR

[7] Galaktionov V. A., “Ob usloviyakh lokalizatsii neogranichennykh reshenii kvazilineinykh parabolicheskikh uravnenii”, DAN SSSR, 264:5 (1982), 1035–1040 | MR | Zbl

[8] Galaktionov V. A., Kurdyumov S. P., Samarskii A. A., “O metode statsionarnykh sostoyanii dlya nelineinykh evolyutsionnykh parabolicheskikh zadach”, DAN SSSR, 278:6 (1984), 1296–1300 | MR | Zbl

[9] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967

[10] Fridman A., Uravneniya s chastnymi proizvodnymi parabolicheskogo tipa, Mir, M., 1968

[11] Kalashnikov A. S., “Nekotorye voprosy kachestvennoi teorii nelineinykh vyrozhdayuschikhsya parabolicheskikh uravnenii vtorogo poryadka”, UMN, 42:2 (1987), 135–176 | MR | Zbl

[12] Tsutsumi M., “Existence and nonexistence of global solutions for nonlinear parabolic equations”, Publ. Res. Inst. Math. Sci., 8 (1972/73), 211–229 | DOI | MR | Zbl

[13] Levine H. A., Payne L. E., “Nonexistence of global weak solutions for classes of nonlinear wave and parabolic equations”, J. Math. Anal. Appl., 55 (1976), 329–334 | DOI | MR | Zbl

[14] Galaktionov V. A., “Ob usloviyakh nesuschestvovaniya v tselom i lokalizatsii reshenii zadachi Koshi dlya odnogo klassa nelineinykh parabolicheskikh uravnenii”, ZhVM i MF, 23:6 (1983), 1341–1354 | MR

[15] Galaktionov V. A., Kurdyumov S. P., Posashkov S. A., Samarskii A. A., “Kvazilineinoe parabolicheskoe uravnenie so slozhnym spektrom neogranichennykh avtomodelnykh reshenii”, Matematicheskoe modelirovanie. Protsessy v nelineinykh sredakh, 1986, 142–182, Nauka, M. | MR

[16] Friedman A., McLeod B., “Blow-up of positive solutions of semilinear heat equations”, Indiana Univ. Math. J., 34 (1985), 425–447 | DOI | MR | Zbl

[17] Galaktionov V. A., Posashkov S. A., “Otsenki lokalizovannykh neogranichennykh reshenii kvazilineinykh parabolicheskikh uravnenii”, Differents. uravneniya, 23:7 (1987), 1133–1143 | MR | Zbl

[18] Galaktionov V. A., Posashkov S. A., “Primenenie novykh teorem sravneniya k issledovaniyu neogranichennykh reshenii nelineinykh parabolicheskikh uravnenii”, Differents. uravneniya, 22:7 (1986), 1165–1173 | MR | Zbl

[19] Galaktionov V. A., Posashkov S. A., O nekotorykh osobennostyakh evolyutsii neogranichennykh reshenii polulineinykh parabolicheskikh uravnenii, Preprint No 232, IPM AN SSSR, M., 1987

[20] Ni W.-M., Sacks P. E., Tavantzis J., “On the asymptotic behavior of solutions of certain quasilinear parabolic equations”, J. Differ. Equat., 54 (1984), 97–120 | DOI | MR | Zbl

[21] Ni W.-M., Sacks P., “Singular behavior in nonlinear parabolic equations”, Trans. Amer. Math. Soc., 287 (1985), 657–671 | DOI | MR | Zbl

[22] Bunkin F. V., Kirichenko N. A., Lukyanchuk B. S., “Termokhimicheskoe deistvie lazernogo izlucheniya”, UFN, 138:1 (1982), 45–94

[23] “Ob odnoi nelineinoi kraevoi zadache zazhiganiya izlucheniem”, ZhVM i MF, 27:4 (1987), 549–559

[24] Levine H. A., Payne L. E., “Nonexistence theorems for the heat equation with nonlinear boundary conditions and for the porous medium equation backward in time”, J. Differ. Equat., 16 (1974), 319–334 | DOI | MR | Zbl

[25] Protter M. H., Weinberger H. F., Maximum princuples in differential equations, Prentice-Hall, Englewood Cliffs, New Jercey, 1967 | MR | Zbl

[26] Walter W., Differential and integral inequalities, Srringer-Verlag, Berlin/New York, 1970 | MR

[27] Maddalena L., “Existence of global solution for reaction-diffusion systems with density dependent diffusion”, Nonlinear Anal. Theory. Meth. Appl., 8 (1984), 1383–1394 | DOI | MR | Zbl

[28] Kishimoto K, Weinberger H. F., “The spatial homogeneity of stable equilibria of some reaction-diffusion systems on convex domain”, J. Differ. Equat., 58 (1985), 15–21 | DOI | MR | Zbl