The word problem for solvable Lie~algebras and groups
Sbornik. Mathematics, Tome 67 (1990) no. 2, pp. 489-525

Voir la notice de l'article provenant de la source Math-Net.Ru

The variety of groups $Z\mathfrak N_2\mathfrak A$ is given by the identity $$ [[x_1,x_2],[x_3,x_4],[x_5,x_6],x_7]=1, $$ and the analogous variety of Lie algebras is given by the identity $$ (x_1x_2)(x_3x_4)(x_5x_6)x_7=0. $$ Previously the author proved the unsolvability of the word problem for any variety of groups (respectively: Lie algebras) containing $Z\mathfrak N_2\mathfrak A$, and its solvability for any subvariety of $\mathfrak N_2\mathfrak A$. Here the word problem is investigated in varieties of Lie algebras over a field of characteristic zero and in varieties of groups contained in $Z\mathfrak N_2\mathfrak A$. It is proved that in the lattice of subvarieties of $Z\mathfrak N_2\mathfrak A$ there exist arbitrary long chains in which the varieties with solvable and unsolvable word problems alternate. In particular, the variety $Z\mathfrak N_2\mathfrak A\frown\mathfrak N_2\mathfrak N_c$ has a solvable word problem for any $c$, while the variety $\mathfrak Y_2$, given within $Z\mathfrak N_2\mathfrak A$ by the identity $$ [[x_1,\dots,x_{2c+2}],[y_1,\dots,y_{2c+2}],[z_1,\dots,z_{2c}]]=1 $$ in the case of groups and by the identity $$ (x_1\dots x_{2c+2})(y_1\dots y_{2c+2})(z_1\dots z_{2c})=0 $$ in the case of Lie algebras, has an unsolvable word problem. It is also proved that in $Z\mathfrak N_2\mathfrak A$ there exists an infinite series of minimal varieties with an unsolvable word problem, i.e. varieties whose proper subvarieties all have solvable word problems. Bibliography: 17 titles.
@article{SM_1990_67_2_a9,
     author = {O. G. Kharlampovich},
     title = {The word problem for solvable {Lie~algebras} and groups},
     journal = {Sbornik. Mathematics},
     pages = {489--525},
     publisher = {mathdoc},
     volume = {67},
     number = {2},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1990_67_2_a9/}
}
TY  - JOUR
AU  - O. G. Kharlampovich
TI  - The word problem for solvable Lie~algebras and groups
JO  - Sbornik. Mathematics
PY  - 1990
SP  - 489
EP  - 525
VL  - 67
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1990_67_2_a9/
LA  - en
ID  - SM_1990_67_2_a9
ER  - 
%0 Journal Article
%A O. G. Kharlampovich
%T The word problem for solvable Lie~algebras and groups
%J Sbornik. Mathematics
%D 1990
%P 489-525
%V 67
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1990_67_2_a9/
%G en
%F SM_1990_67_2_a9
O. G. Kharlampovich. The word problem for solvable Lie~algebras and groups. Sbornik. Mathematics, Tome 67 (1990) no. 2, pp. 489-525. http://geodesic.mathdoc.fr/item/SM_1990_67_2_a9/