On the method of stationary states for quasilinear parabolic equations
Sbornik. Mathematics, Tome 67 (1990) no. 2, pp. 449-471 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A method is presented for investigating the space-time structure of unbounded nonnegative solutions of quasilinear parabolic equations of the form $u_t=\mathbf A(u)$, where $\mathbf A$ is a nonlinear elliptic operator. Three examples are considered in detail: the Cauchy problem for the equation $$ u_t=\nabla\cdot((1+|\nabla u|^2)^{\sigma/2}\nabla u)+u^\beta, $$ where $\sigma>0$ and $\beta>1$ are constants; the boundary value problem in $\Omega=R^3\cap\{x_3>0\}$ \begin{gather*} u_t=\nabla\cdot((1+u^\sigma)\nabla u),\qquad t>0,\quad x\in\Omega; \\ -(1+u^\sigma)u_{x_3}=u^\alpha,\qquad t>0,\ x_3=0;\quad\alpha=\mathrm{const}>0; \end{gather*} and the Cauchy problem for the system $u_t=\nabla\cdot((1+u^2)^{1/2}\nabla u)+vw$, $v_t=\nabla\cdot((1+v^2)\nabla v)+u^pw$, $w_t=\nabla\cdot((1+w^2)^{3/2}\nabla w)uw$, $p\geqslant1$. It is assumed that at the point $x=0$ the solution grows without bound as $t\to T_0^-<+\infty$. The derivation of an estimate of the solution near $t=T_0^-$, $x=0$ is based on an analysis of an appropriate family of stationary solutions $\{U_\lambda\}$: $\mathbf A(U_\lambda)=0$, $U_\lambda(0)=\lambda$, $\lambda>0$ a parameter. It is shown that the behavior of a solution as $t\to T_0^-$ depends to large extent on the structure of the “envelope” $L(x)=\sup\limits_{\lambda>0}U_\lambda(x)$. In particular, if $L(x)\equiv+\infty$, then $u(t,x)$ grows without bound as $t\to T_0^-$ at points arbitrarily far from $x=0$. If $L(x)<+\infty$ for $x\ne0$, then $L(x)$ determines a lower bound for $u(t,x)$ in a neighborhood of $t=T_0^-$, $x=0$. Bibliography: 28 titles.
@article{SM_1990_67_2_a7,
     author = {V. A. Galaktionov and S. P. Kurdyumov and A. A. Samarskii},
     title = {On the method of stationary states for quasilinear parabolic equations},
     journal = {Sbornik. Mathematics},
     pages = {449--471},
     year = {1990},
     volume = {67},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1990_67_2_a7/}
}
TY  - JOUR
AU  - V. A. Galaktionov
AU  - S. P. Kurdyumov
AU  - A. A. Samarskii
TI  - On the method of stationary states for quasilinear parabolic equations
JO  - Sbornik. Mathematics
PY  - 1990
SP  - 449
EP  - 471
VL  - 67
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1990_67_2_a7/
LA  - en
ID  - SM_1990_67_2_a7
ER  - 
%0 Journal Article
%A V. A. Galaktionov
%A S. P. Kurdyumov
%A A. A. Samarskii
%T On the method of stationary states for quasilinear parabolic equations
%J Sbornik. Mathematics
%D 1990
%P 449-471
%V 67
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1990_67_2_a7/
%G en
%F SM_1990_67_2_a7
V. A. Galaktionov; S. P. Kurdyumov; A. A. Samarskii. On the method of stationary states for quasilinear parabolic equations. Sbornik. Mathematics, Tome 67 (1990) no. 2, pp. 449-471. http://geodesic.mathdoc.fr/item/SM_1990_67_2_a7/

[1] Levine H. A., “Nonexistence of global solutions to some properly and improperly posed problems of mathematical physics: the method of unbounded Fourier coefficients”, Math. Ann., 214 (1975), 205–220 | DOI | MR | Zbl

[2] Kurdyumov S. P., “Sobstvennye funktsii goreniya nelineinoi sredy i konstruktivnye zakony postroeniya ee organizatsii”, Sovremennye problemy matematicheskoi fiziki i vychislitelnoi matematiki, 1982, 217–243, Nauka, M. | MR

[3] Zmitrenko N. V., Kurdyumov S. P., Mikhailov A. P., “Teoriya rezhimov s obostreniem v szhimaemykh sredakh”, Itogi nauki i tekhniki. Sovr. probl. matem. Noveishie dostizheniya., 28, VINITI, 1986, 3–94 | MR

[4] Galaktionov V. A., Dorodnitsyn V. A., Elenin G. G., Kurdyumov S. P., Samarskii A. A., “Kvazilineinoe uravnenie teploprovodnosti s istochnikom: obostrenie, lokalizatsiya, simmetriya, tochnye resheniya, asimptotiki, struktury”, Itogi nauki i tekhniki. Sovr. probl. matem. Noveishie dostizheniya, 28, VINITI, M., 1986, 95–206 | MR

[5] Giga Y., Kohn R., “Characterizing blow-up using similarity variables”, Indiana Univ. Math. J., 36 (1987), 1–40 | DOI | MR | Zbl

[6] Samarskii A. A., Galaktionov V. A., Kurdyumov S. P., Mikhailov A. P., Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1987 | MR | Zbl

[7] Galaktionov V. A., “Ob usloviyakh lokalizatsii neogranichennykh reshenii kvazilineinykh parabolicheskikh uravnenii”, DAN SSSR, 264:5 (1982), 1035–1040 | MR | Zbl

[8] Galaktionov V. A., Kurdyumov S. P., Samarskii A. A., “O metode statsionarnykh sostoyanii dlya nelineinykh evolyutsionnykh parabolicheskikh zadach”, DAN SSSR, 278:6 (1984), 1296–1300 | MR | Zbl

[9] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967

[10] Fridman A., Uravneniya s chastnymi proizvodnymi parabolicheskogo tipa, Mir, M., 1968

[11] Kalashnikov A. S., “Nekotorye voprosy kachestvennoi teorii nelineinykh vyrozhdayuschikhsya parabolicheskikh uravnenii vtorogo poryadka”, UMN, 42:2 (1987), 135–176 | MR | Zbl

[12] Tsutsumi M., “Existence and nonexistence of global solutions for nonlinear parabolic equations”, Publ. Res. Inst. Math. Sci., 8 (1972/73), 211–229 | DOI | MR | Zbl

[13] Levine H. A., Payne L. E., “Nonexistence of global weak solutions for classes of nonlinear wave and parabolic equations”, J. Math. Anal. Appl., 55 (1976), 329–334 | DOI | MR | Zbl

[14] Galaktionov V. A., “Ob usloviyakh nesuschestvovaniya v tselom i lokalizatsii reshenii zadachi Koshi dlya odnogo klassa nelineinykh parabolicheskikh uravnenii”, ZhVM i MF, 23:6 (1983), 1341–1354 | MR

[15] Galaktionov V. A., Kurdyumov S. P., Posashkov S. A., Samarskii A. A., “Kvazilineinoe parabolicheskoe uravnenie so slozhnym spektrom neogranichennykh avtomodelnykh reshenii”, Matematicheskoe modelirovanie. Protsessy v nelineinykh sredakh, Nauka, M., 1986, 142–182 | MR

[16] Friedman A., McLeod B., “Blow-up of positive solutions of semilinear heat equations”, Indiana Univ. Math. J., 34 (1985), 425–447 | DOI | MR | Zbl

[17] Galaktionov V. A., Posashkov S. A., “Otsenki lokalizovannykh neogranichennykh reshenii kvazilineinykh parabolicheskikh uravnenii”, Differents. uravneniya, 23:7 (1987), 1133–1143 | MR | Zbl

[18] Galaktionov V. A., Posashkov S. A., “Primenenie novykh teorem sravneniya k issledovaniyu neogranichennykh reshenii nelineinykh parabolicheskikh uravnenii”, Differents. uravneniya, 22:7 (1986), 1165–1173 | MR | Zbl

[19] Galaktionov V. A., Posashkov S..A., O nekotorykh osobennostyakh evolyutsii neogranichennykh reshenii polulineinykh parabolicheskikh uravnenii, Preprint No 232, IPM AN SSSR, M., 1987

[20] Ni W.-M., Sacks P. E., Tavantzis J., “On the asymptotic behavior of solutions of certain quasilinear parabolic equations”, J. Differ. Equat., 54:97–120 (1984) | MR | Zbl

[21] Ni W.-M., Sacks P., “Singular behavior in nonlinear parabolic equations”, Trans. Amer. Math. Soc., 287 (1985), 657–671 | DOI | MR | Zbl

[22] Bunkin F. V., Kirichenko N. A., Lukyanchuk B. S., “Termokhimicheskoe deistvie lazernogo izlucheniya”, UFN, 138:1 (1982), 45–94

[23] Bunkin F. V., Galaktionov V. A., Kirichenko N. A., Kurdyumov S. P., Samarskii A. A., “Ob odnoi nelineinoi kraevoi zadache zazhiganiya izlucheniem”, ZhVM i MF, 27:4 (1987), 549–559

[24] Levine H. A., Payne L. E., “Nonexistence theorems for the heat equation with nonlinear boundary conditions and for the porous medium equation backward in time”, J. Differ. Equat., 16 (1974), 319–334 | DOI | MR | Zbl

[25] Protter M. H., Weinberger H. F., Maximum princuples in differential equations, Prentice-Hall, Englewood Cliffs, New Jercey, 1967 | MR | Zbl

[26] Walter W., Differential and integral inequalities, Springer-Verlag, Berlin/New York, 1970 | MR

[27] Maddalena L. “Existence of global solution for reaction-diffusion systems with density dependent diffusion”, Nonlinear Anal. Theory. Meth. Appl., 8 (1984), 1383–1394 | DOI | MR | Zbl

[28] Kishimoto K., Weinberger H. F., “The spatial homogeneity of stable equilibria of some reaction-diffusion systems on convex domain”, J. Differ. Equat., 58 (1985), 15–21 | DOI | MR | Zbl