On the method of stationary states for quasilinear parabolic equations
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 67 (1990) no. 2, pp. 449-471
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A method is presented for investigating the space-time structure of unbounded nonnegative solutions of quasilinear parabolic equations of the form $u_t=\mathbf A(u)$, where $\mathbf A$ is a nonlinear elliptic operator. Three examples are considered in detail: the Cauchy problem for the equation 
$$
u_t=\nabla\cdot((1+|\nabla u|^2)^{\sigma/2}\nabla u)+u^\beta,
$$
where $\sigma>0$ and $\beta>1$ are constants; the boundary value problem in $\Omega=R^3\cap\{x_3>0\}$
\begin{gather*}
u_t=\nabla\cdot((1+u^\sigma)\nabla u),\qquad t>0,\quad x\in\Omega;
\\
-(1+u^\sigma)u_{x_3}=u^\alpha,\qquad t>0,\ x_3=0;\quad\alpha=\mathrm{const}>0;
\end{gather*}
and the Cauchy problem for the system $u_t=\nabla\cdot((1+u^2)^{1/2}\nabla u)+vw$, $v_t=\nabla\cdot((1+v^2)\nabla v)+u^pw$, $w_t=\nabla\cdot((1+w^2)^{3/2}\nabla w)uw$, $p\geqslant1$. It is assumed that at the point $x=0$ the solution grows without bound as $t\to T_0^-+\infty$. The derivation of an estimate of the solution near $t=T_0^-$, $x=0$ is based on an analysis of an appropriate family of stationary solutions $\{U_\lambda\}$: $\mathbf A(U_\lambda)=0$, $U_\lambda(0)=\lambda$, $\lambda>0$ a parameter. It is shown that the behavior of a solution as $t\to T_0^-$ depends to large extent on the structure of the “envelope” $L(x)=\sup\limits_{\lambda>0}U_\lambda(x)$. In particular, if $L(x)\equiv+\infty$, then $u(t,x)$ grows without bound as $t\to T_0^-$ at points arbitrarily far from $x=0$. If $L(x)+\infty$ for $x\ne0$, then $L(x)$ determines a lower bound for $u(t,x)$ in a neighborhood of $t=T_0^-$, $x=0$.
Bibliography: 28 titles.
			
            
            
            
          
        
      @article{SM_1990_67_2_a7,
     author = {V. A. Galaktionov and S. P. Kurdyumov and A. A. Samarskii},
     title = {On the method of stationary states for quasilinear parabolic equations},
     journal = {Sbornik. Mathematics},
     pages = {449--471},
     publisher = {mathdoc},
     volume = {67},
     number = {2},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1990_67_2_a7/}
}
                      
                      
                    TY - JOUR AU - V. A. Galaktionov AU - S. P. Kurdyumov AU - A. A. Samarskii TI - On the method of stationary states for quasilinear parabolic equations JO - Sbornik. Mathematics PY - 1990 SP - 449 EP - 471 VL - 67 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1990_67_2_a7/ LA - en ID - SM_1990_67_2_a7 ER -
V. A. Galaktionov; S. P. Kurdyumov; A. A. Samarskii. On the method of stationary states for quasilinear parabolic equations. Sbornik. Mathematics, Tome 67 (1990) no. 2, pp. 449-471. http://geodesic.mathdoc.fr/item/SM_1990_67_2_a7/
