The Galois group of a multidimensional local field of positive characteristic
Sbornik. Mathematics, Tome 67 (1990) no. 2, pp. 595-610
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $K$ be an arbitrary field, Henselian relative to a discrete valuation $v$ of finite rank $n$ with residue field $k$. If $v=v_n\circ v_{n-1}\circ\dots\circ v_1$, where $v_i$ ($i=1,2,\dots,n$) is a discrete valuation of rank $1$, then, setting $K_n=K$, we denote by $K_{i-1}$ the residue field of the valuation $v_i$ of the field $K_i$, where $i=1,2,\dots,n$. A description of the absolute Galois group $\mathfrak G(K)$ of the field $K$, the inertia group $\mathfrak G^0(K)$ and the ramification group $\mathfrak G^1(K)$ of the valuation $v$ are obtained in terms of the absolute Galois group of the field of residues, its action on the roots of unity in the separable closure of the field $k$, and the cardinalities of the fields $K_0=k$ and $K_1,\dots,K_{n-1}$.
Bibliography: 12 titles.
@article{SM_1990_67_2_a14,
author = {O. V. Mel'nikov and A. A. Sharomet},
title = {The {Galois} group of a multidimensional local field of positive characteristic},
journal = {Sbornik. Mathematics},
pages = {595--610},
publisher = {mathdoc},
volume = {67},
number = {2},
year = {1990},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1990_67_2_a14/}
}
TY - JOUR AU - O. V. Mel'nikov AU - A. A. Sharomet TI - The Galois group of a multidimensional local field of positive characteristic JO - Sbornik. Mathematics PY - 1990 SP - 595 EP - 610 VL - 67 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1990_67_2_a14/ LA - en ID - SM_1990_67_2_a14 ER -
O. V. Mel'nikov; A. A. Sharomet. The Galois group of a multidimensional local field of positive characteristic. Sbornik. Mathematics, Tome 67 (1990) no. 2, pp. 595-610. http://geodesic.mathdoc.fr/item/SM_1990_67_2_a14/