The Galois group of a multidimensional local field of positive characteristic
Sbornik. Mathematics, Tome 67 (1990) no. 2, pp. 595-610 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $K$ be an arbitrary field, Henselian relative to a discrete valuation $v$ of finite rank $n$ with residue field $k$. If $v=v_n\circ v_{n-1}\circ\dots\circ v_1$, where $v_i$ ($i=1,2,\dots,n$) is a discrete valuation of rank $1$, then, setting $K_n=K$, we denote by $K_{i-1}$ the residue field of the valuation $v_i$ of the field $K_i$, where $i=1,2,\dots,n$. A description of the absolute Galois group $\mathfrak G(K)$ of the field $K$, the inertia group $\mathfrak G^0(K)$ and the ramification group $\mathfrak G^1(K)$ of the valuation $v$ are obtained in terms of the absolute Galois group of the field of residues, its action on the roots of unity in the separable closure of the field $k$, and the cardinalities of the fields $K_0=k$ and $K_1,\dots,K_{n-1}$. Bibliography: 12 titles.
@article{SM_1990_67_2_a14,
     author = {O. V. Mel'nikov and A. A. Sharomet},
     title = {The {Galois} group of a multidimensional local field of positive characteristic},
     journal = {Sbornik. Mathematics},
     pages = {595--610},
     year = {1990},
     volume = {67},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1990_67_2_a14/}
}
TY  - JOUR
AU  - O. V. Mel'nikov
AU  - A. A. Sharomet
TI  - The Galois group of a multidimensional local field of positive characteristic
JO  - Sbornik. Mathematics
PY  - 1990
SP  - 595
EP  - 610
VL  - 67
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1990_67_2_a14/
LA  - en
ID  - SM_1990_67_2_a14
ER  - 
%0 Journal Article
%A O. V. Mel'nikov
%A A. A. Sharomet
%T The Galois group of a multidimensional local field of positive characteristic
%J Sbornik. Mathematics
%D 1990
%P 595-610
%V 67
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1990_67_2_a14/
%G en
%F SM_1990_67_2_a14
O. V. Mel'nikov; A. A. Sharomet. The Galois group of a multidimensional local field of positive characteristic. Sbornik. Mathematics, Tome 67 (1990) no. 2, pp. 595-610. http://geodesic.mathdoc.fr/item/SM_1990_67_2_a14/

[1] Parshin A. N., “Lokalnaya teoriya polei klassov”, Tr. Matem. in-ta AN SSSR, 165 (1984), 143–170 | MR | Zbl

[2] Melnikov O. V., Tavgen O. I., “Absolyutnaya gruppa Galua genzeleva polya”, DAN BSSR, 29:7 (1985), 581–563 | MR

[3] Koch H., “Über die Galoissche Gruppe der algebraischen Abschliessung eines Potenzreihenkörpers mit endlichem Konstantenkörper”, Math. Nachr., 35:5–6. (1967), 323–327 | DOI | MR

[4] Lenstra H. W., Jr., “A normal basis theorem for infinite Galois extensions”, Indag. Math., 47:2 (1985), 221–228 | MR | Zbl

[5] Pontryagin L. S., Nepreryvnye gruppy, Nauka, M., 1973 | MR | Zbl

[6] Neukirch J., “Freie Produkte pro-endlicher Gruppen und ihre Kohomologie”, Arch. Math., 22:4 (1971), 337–357 | DOI | MR | Zbl

[7] Smith J. H., “On products of profinite groups”, Ill. J. Math., 13:4 (1969), 680–688 | MR | Zbl

[8] Kox X., Teoriya Galua $p$-rasshirenii, Mir, M., 1973 | MR

[9] Brumer A., “Pseudocompact algebras, profinite groups and class formations”, J. Algebra, 4:3 (1966), 442–470 | DOI | MR | Zbl

[10] Zarisskii O., Samyuel P., Kommutativnaya algebra, t. 2, IL, M., 1963

[11] Serr Zh.-P., Kogomologii Galua, Mir, M., 1968 | MR

[12] Burbaki N., Kommutativnaya algebra, Mir, M., 1971 | MR