On the asymptotics of the fundamental solution of a~parabolic equation in the critical case
Sbornik. Mathematics, Tome 67 (1990) no. 2, pp. 581-594

Voir la notice de l'article provenant de la source Math-Net.Ru

The behavior as $t\to\infty$ of the fundamental solution $G(x,s,t)$ of the Cauchy problem for the equation $u_t=u_{xx}-a(x)u$ $(x\in\mathbf R^1$, $t>0)$ is studied in the case when the decay rate of the coefficient $a(x)$ as $x\to\pm\infty$ is critical: $$ a(x)=a_2^\pm x^{-2}+\sum_{i=3}^\infty a_i^\pm x^{-i}\qquad(x\to\pm\infty). $$ The asymptotic expansion of $G(x,s,t)$ as $t\to\infty$ is constructed and established for all $x,s\in\mathbf R^1$. The fundamental solution decays like a power, and the decay rate is determined by the quantities $a_2^\pm$. Bibliography: 8 titles.
@article{SM_1990_67_2_a13,
     author = {E. F. Lelikova},
     title = {On the asymptotics of the fundamental solution of a~parabolic equation in the critical case},
     journal = {Sbornik. Mathematics},
     pages = {581--594},
     publisher = {mathdoc},
     volume = {67},
     number = {2},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1990_67_2_a13/}
}
TY  - JOUR
AU  - E. F. Lelikova
TI  - On the asymptotics of the fundamental solution of a~parabolic equation in the critical case
JO  - Sbornik. Mathematics
PY  - 1990
SP  - 581
EP  - 594
VL  - 67
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1990_67_2_a13/
LA  - en
ID  - SM_1990_67_2_a13
ER  - 
%0 Journal Article
%A E. F. Lelikova
%T On the asymptotics of the fundamental solution of a~parabolic equation in the critical case
%J Sbornik. Mathematics
%D 1990
%P 581-594
%V 67
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1990_67_2_a13/
%G en
%F SM_1990_67_2_a13
E. F. Lelikova. On the asymptotics of the fundamental solution of a~parabolic equation in the critical case. Sbornik. Mathematics, Tome 67 (1990) no. 2, pp. 581-594. http://geodesic.mathdoc.fr/item/SM_1990_67_2_a13/