On the asymptotics of the fundamental solution of a~parabolic equation in the critical case
Sbornik. Mathematics, Tome 67 (1990) no. 2, pp. 581-594
Voir la notice de l'article provenant de la source Math-Net.Ru
The behavior as $t\to\infty$ of the fundamental solution $G(x,s,t)$ of the Cauchy problem for the equation $u_t=u_{xx}-a(x)u$ $(x\in\mathbf R^1$, $t>0)$ is studied in the case when the decay rate of the coefficient $a(x)$ as $x\to\pm\infty$ is critical:
$$
a(x)=a_2^\pm x^{-2}+\sum_{i=3}^\infty a_i^\pm x^{-i}\qquad(x\to\pm\infty).
$$
The asymptotic expansion of $G(x,s,t)$ as $t\to\infty$ is constructed and established for all $x,s\in\mathbf R^1$. The fundamental solution decays like a power, and the decay rate is determined by the quantities $a_2^\pm$.
Bibliography: 8 titles.
@article{SM_1990_67_2_a13,
author = {E. F. Lelikova},
title = {On the asymptotics of the fundamental solution of a~parabolic equation in the critical case},
journal = {Sbornik. Mathematics},
pages = {581--594},
publisher = {mathdoc},
volume = {67},
number = {2},
year = {1990},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1990_67_2_a13/}
}
E. F. Lelikova. On the asymptotics of the fundamental solution of a~parabolic equation in the critical case. Sbornik. Mathematics, Tome 67 (1990) no. 2, pp. 581-594. http://geodesic.mathdoc.fr/item/SM_1990_67_2_a13/