Topological groups and Dugundji compacta
Sbornik. Mathematics, Tome 67 (1990) no. 2, pp. 555-580

Voir la notice de l'article provenant de la source Math-Net.Ru

A compact space $X$ is called a Dugundji compactum if for every compact $Y$ containing $X$, there exists a linear extension operator $$\Lambda\colon C(X)\to C(Y),$$ which preserves nonnegativity and maps constants into constants. It is known that every compact group is a Dugundji compactum. In this paper we show that compacta connected in a natural way with topological groups enjoy the same property. For example, in each of the following cases, the compact space $X$ is a Dugundji compactum: 1) $X$ is a retract of an arbitrary topological group; 2) $X=\beta P$, where $P$ is a pseudocompact space on which some $\aleph_0$-bounded topological group acts transitively and continuously. Bibliography: 57 titles.
@article{SM_1990_67_2_a12,
     author = {V. V. Uspenskii},
     title = {Topological groups and {Dugundji} compacta},
     journal = {Sbornik. Mathematics},
     pages = {555--580},
     publisher = {mathdoc},
     volume = {67},
     number = {2},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1990_67_2_a12/}
}
TY  - JOUR
AU  - V. V. Uspenskii
TI  - Topological groups and Dugundji compacta
JO  - Sbornik. Mathematics
PY  - 1990
SP  - 555
EP  - 580
VL  - 67
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1990_67_2_a12/
LA  - en
ID  - SM_1990_67_2_a12
ER  - 
%0 Journal Article
%A V. V. Uspenskii
%T Topological groups and Dugundji compacta
%J Sbornik. Mathematics
%D 1990
%P 555-580
%V 67
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1990_67_2_a12/
%G en
%F SM_1990_67_2_a12
V. V. Uspenskii. Topological groups and Dugundji compacta. Sbornik. Mathematics, Tome 67 (1990) no. 2, pp. 555-580. http://geodesic.mathdoc.fr/item/SM_1990_67_2_a12/