Wreath products and periodic factorable groups
Sbornik. Mathematics, Tome 67 (1990) no. 2, pp. 535-553 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Wreath products of sequences of permutation groups are applied to construct groups decomposable as products of permuting subgroups. A natural factorization is exhibited for such wreath products, corresponding to direct decompositions of the wreathed groups and a partitioning of the index set into nonintersecting subsets. A general construction for producing factorable subgroups of wreath products is described here. It is used to make an example of a residually finite periodic but not locally finite group decomposable as a product of locally finite subgroups; this answers a question of V. P. Shunkov in the negative. Bibliography: 10 titles.
@article{SM_1990_67_2_a11,
     author = {V. I. Sushchanskii},
     title = {Wreath products and periodic factorable groups},
     journal = {Sbornik. Mathematics},
     pages = {535--553},
     year = {1990},
     volume = {67},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1990_67_2_a11/}
}
TY  - JOUR
AU  - V. I. Sushchanskii
TI  - Wreath products and periodic factorable groups
JO  - Sbornik. Mathematics
PY  - 1990
SP  - 535
EP  - 553
VL  - 67
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1990_67_2_a11/
LA  - en
ID  - SM_1990_67_2_a11
ER  - 
%0 Journal Article
%A V. I. Sushchanskii
%T Wreath products and periodic factorable groups
%J Sbornik. Mathematics
%D 1990
%P 535-553
%V 67
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1990_67_2_a11/
%G en
%F SM_1990_67_2_a11
V. I. Sushchanskii. Wreath products and periodic factorable groups. Sbornik. Mathematics, Tome 67 (1990) no. 2, pp. 535-553. http://geodesic.mathdoc.fr/item/SM_1990_67_2_a11/

[1] Chernikov N. S., Gruppy, razlozhimye v proizvedenie perestanovochnykh podgrupp, Naukova dumka, Kiev, 1987 | MR | Zbl

[2] Sysak Ya. P., Proizvedeniya beskonechnykh grupp, Preprint 82.53, In-t matematiki AN USSR, Kiev, 1982, 36 pp.

[3] Suchkov N. M., “Primer smeshannoi gruppy, faktorizuemoi dvumya periodicheskimi podgruppami”, Algebra i logika, 23:5 (1984), 573–577 | MR | Zbl

[4] Kaluzhnin L. A., “Ob odnom obobschenii silovskikh $p$-podgrupp simmetricheskikh grupp”, Acta Math. Hung., 2:3/4 (1951), 197–221 | DOI

[5] Suschanskii V. I., “Spleteniya po posledovatelnostyam grupp podstanovok i finitno approksimiruemye gruppy”, DAN USSR. Ser. A, 1984, no. 2, 19–22 | Zbl

[6] Kourovskaya tetrad (Nereshennye voprosy teorii grupp), 10-e izd. dop., In-t matematiki SO AN SSSR, Novosibirsk, 1986

[7] Kaluzhnin L. A., Suschanskii V. I., “O spleteniyakh abelevykh grupp”, Tr. MMO, 29, 1973, 147–163 | Zbl

[8] Suschanskii V. I., “Predstavlenie finitno approksimiruemykh $p$-grupp izometriyami prostranstva tselykh $p$-adicheskikh chisel”, DAN USSR. Ser. A, 1986, no. 5, 23–26 | Zbl

[9] Suschanskii V. Ya., “Periodicheskie $p$-gruppy podstanovok i neogranichennaya problema Bernsaida”, DAN SSSR, 247:3 (1979), 557–561 | MR | Zbl

[10] Grigorchuk R. I., “K probleme Bernsaida o periodicheskikh gruppakh”, Funktsion. analiz i ego pril., 14:1 (1980), 53–54 | MR | Zbl