Wreath products and periodic factorable groups
Sbornik. Mathematics, Tome 67 (1990) no. 2, pp. 535-553

Voir la notice de l'article provenant de la source Math-Net.Ru

Wreath products of sequences of permutation groups are applied to construct groups decomposable as products of permuting subgroups. A natural factorization is exhibited for such wreath products, corresponding to direct decompositions of the wreathed groups and a partitioning of the index set into nonintersecting subsets. A general construction for producing factorable subgroups of wreath products is described here. It is used to make an example of a residually finite periodic but not locally finite group decomposable as a product of locally finite subgroups; this answers a question of V. P. Shunkov in the negative. Bibliography: 10 titles.
@article{SM_1990_67_2_a11,
     author = {V. I. Sushchanskii},
     title = {Wreath products and periodic factorable groups},
     journal = {Sbornik. Mathematics},
     pages = {535--553},
     publisher = {mathdoc},
     volume = {67},
     number = {2},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1990_67_2_a11/}
}
TY  - JOUR
AU  - V. I. Sushchanskii
TI  - Wreath products and periodic factorable groups
JO  - Sbornik. Mathematics
PY  - 1990
SP  - 535
EP  - 553
VL  - 67
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1990_67_2_a11/
LA  - en
ID  - SM_1990_67_2_a11
ER  - 
%0 Journal Article
%A V. I. Sushchanskii
%T Wreath products and periodic factorable groups
%J Sbornik. Mathematics
%D 1990
%P 535-553
%V 67
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1990_67_2_a11/
%G en
%F SM_1990_67_2_a11
V. I. Sushchanskii. Wreath products and periodic factorable groups. Sbornik. Mathematics, Tome 67 (1990) no. 2, pp. 535-553. http://geodesic.mathdoc.fr/item/SM_1990_67_2_a11/