The spectrum of dynamical systems and the Riesz products
Sbornik. Mathematics, Tome 67 (1990) no. 2, pp. 341-366

Voir la notice de l'article provenant de la source Math-Net.Ru

A group representation generating the Mackey action is considered. Its decomposition into irreducible representations is studied; this leads to the classical Riesz products and their generalizations (also noncommutative). Some connections with the tail $\sigma$-algebra of random walks on the groups are indicated. Bibliography: 12 titles.
@article{SM_1990_67_2_a1,
     author = {R. S. Ismagilov},
     title = {The spectrum of dynamical systems and the {Riesz} products},
     journal = {Sbornik. Mathematics},
     pages = {341--366},
     publisher = {mathdoc},
     volume = {67},
     number = {2},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1990_67_2_a1/}
}
TY  - JOUR
AU  - R. S. Ismagilov
TI  - The spectrum of dynamical systems and the Riesz products
JO  - Sbornik. Mathematics
PY  - 1990
SP  - 341
EP  - 366
VL  - 67
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1990_67_2_a1/
LA  - en
ID  - SM_1990_67_2_a1
ER  - 
%0 Journal Article
%A R. S. Ismagilov
%T The spectrum of dynamical systems and the Riesz products
%J Sbornik. Mathematics
%D 1990
%P 341-366
%V 67
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1990_67_2_a1/
%G en
%F SM_1990_67_2_a1
R. S. Ismagilov. The spectrum of dynamical systems and the Riesz products. Sbornik. Mathematics, Tome 67 (1990) no. 2, pp. 341-366. http://geodesic.mathdoc.fr/item/SM_1990_67_2_a1/