The spectrum of dynamical systems and the Riesz products
Sbornik. Mathematics, Tome 67 (1990) no. 2, pp. 341-366
Voir la notice de l'article provenant de la source Math-Net.Ru
A group representation generating the Mackey action is considered. Its decomposition into irreducible representations is studied; this leads to the classical Riesz products and their generalizations (also noncommutative). Some connections with the tail $\sigma$-algebra of random walks on the groups are indicated.
Bibliography: 12 titles.
@article{SM_1990_67_2_a1,
author = {R. S. Ismagilov},
title = {The spectrum of dynamical systems and the {Riesz} products},
journal = {Sbornik. Mathematics},
pages = {341--366},
publisher = {mathdoc},
volume = {67},
number = {2},
year = {1990},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1990_67_2_a1/}
}
R. S. Ismagilov. The spectrum of dynamical systems and the Riesz products. Sbornik. Mathematics, Tome 67 (1990) no. 2, pp. 341-366. http://geodesic.mathdoc.fr/item/SM_1990_67_2_a1/