Solution of the Dirichlet problem for curvature equations of order $m$
Sbornik. Mathematics, Tome 67 (1990) no. 2, pp. 317-339 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Solvability conditions for curvature equations of order which are sufficient, and almost necessary, are obtained, and theorems concerning the existence of solutions in $C^{l+2+\alpha}(\overline\Omega)$, $l\geqslant2$, $0<\alpha<1$, are proved. The first-order curvature equation coincides with the curvature equation of order $m$, and the curvature equation of order $n$ with the Monge–Ampère equation. Bibliography: 18 titles.
@article{SM_1990_67_2_a0,
     author = {N. M. Ivochkina},
     title = {Solution of the {Dirichlet} problem for curvature equations of order~$m$},
     journal = {Sbornik. Mathematics},
     pages = {317--339},
     year = {1990},
     volume = {67},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1990_67_2_a0/}
}
TY  - JOUR
AU  - N. M. Ivochkina
TI  - Solution of the Dirichlet problem for curvature equations of order $m$
JO  - Sbornik. Mathematics
PY  - 1990
SP  - 317
EP  - 339
VL  - 67
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1990_67_2_a0/
LA  - en
ID  - SM_1990_67_2_a0
ER  - 
%0 Journal Article
%A N. M. Ivochkina
%T Solution of the Dirichlet problem for curvature equations of order $m$
%J Sbornik. Mathematics
%D 1990
%P 317-339
%V 67
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1990_67_2_a0/
%G en
%F SM_1990_67_2_a0
N. M. Ivochkina. Solution of the Dirichlet problem for curvature equations of order $m$. Sbornik. Mathematics, Tome 67 (1990) no. 2, pp. 317-339. http://geodesic.mathdoc.fr/item/SM_1990_67_2_a0/

[1] Ladyzhenskaya O. A., Uraltseva N. Ya., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR

[2] Serrin J., “The problem of Dirihlet for quasilinear elliptic differential equations with many independent variables”, Philos. Trans. Roy. Soc. London, 264 (1969), 413–496 | DOI | MR | Zbl

[3] Gilbarg D., Trudinger N. S., Elliptic partial differential equations of second order, Springer-Verlag, Berlin, 1983 | MR | Zbl

[4] Krylov H. V., Nelineinye ellipticheskie i parabolicheskie uravneniya vtorogo poryadka, Nauka, M., 1985 | MR

[5] Caffarelli L., Nirenberg L., Spruck J., “The Dirichlet problem for nonlinear second order elliptic equations. I. Monge–Ampere equation”, Comm. Pure Appl. Math., 37 (1984), 369–402 | DOI | MR | Zbl

[6] Ivochkina N. M., “Reshenie zadachi Dirikhle dlya nekotorykh uravnenii tipa Monzha–Ampera”, Matem. sb., 128(170) (1985), 403–415 | MR

[7] Caffarelli L., Nirenberg L., Spruck J., “The Dirichlet problem for nonlinear second order elliptic equations. III. Functions of the eigenvalues of Hessian”, Acta Math., 155:3, 4 (1985), 261–304 | DOI | MR

[8] Krylov N. V., “O pervoi kraevoi zadache dlya nelineinykh vyrozhdayuschikhsya ellipticheskikh uravnenii”, Izv. AN SSSR. Ser. matem., 51 (1987), 242–269 | MR | Zbl

[9] Ivochkina N. M., “Vosstanovlenie poverkhnosti po ee krivizne poryadka $m$”, UMN, 40:5 (1985), 192

[10] Ivochkina N. M., “Klassicheskaya razreshimost zadachi Dirikhle dlya uravneniya Monzha–Ampera”, 3ap. nauch. semin. LOMI, 131 (1983), 72–79 | MR | Zbl

[11] Safonov M. V., “Granichnye otsenki v $C^{2+\alpha}$ dlya reshenii nelineinykh ellipticheskikh uravnenii”, UMN, 38:5 (1983), 146–147 | MR

[12] Ivochkina N. M., “Opisanie konusov ustoichivosti, porozhdaemykh differentsialnymi operatorami tipa Monzha–Ampera”, Matem. sb., 122(164) (1983), 265–275 | MR

[13] Ivochkina N. M., “Reshenie zadachi Dirikhle dlya nekotorykh uravnenii tipa Monzha–Ampera”, DAN SSSR, 279:4 (1984), 796–798 | MR | Zbl

[14] Garding L., “An inequality for hyperbolic polvnomials”, J. Math, and Mech., 8 (1959), 957–965 | MR | Zbl

[15] Ivochkina N. M., “Integralnyi metod barernykh funktsii i zadacha Dirikhle dlya uravnenii s operatorami tipa Monzha–Ampera”, Matem. sb., 112(156) (1980), 193–206 | MR | Zbl

[16] Pogorelov A. V., Mnogomernaya problema Markovskogo, Nauka, M., 1975 | MR | Zbl

[17] Evans L. C., “Classical solutions of fully nonlinear, convex second order elliptic equations”, Comm Pure Appl. Math., 35 (1982), 333–363 | DOI | MR | Zbl

[18] Miranda K., Uravneniya s chastnymi proizvodnymi ellipticheskogo tipa, IL, M., 1957