On some properties of free Abelian extensions
Sbornik. Mathematics, Tome 67 (1990) no. 1, pp. 303-315

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $B$ be an arbitrary group. Present it as a factor group of a free group $F$: $B\cong F/N$, $N\vartriangleleft F$. The extension $$1\to N/N'\to F/N'\to B\to1$$ is said to be a it free Abelian extension of the group $B$ (it is free in the category of extensions of $B$ by all possible Abelian groups). The author continues his study of the integral homology groups $H_n(F/N')$. The main result is that for any $B$ the exponent of the torsion subgroup of the group $H_n(F/N')\otimes Z[1/2]$ divides $n$ (as usual, $Z[1/2]$ is the ring of $2$-rational numbers). At the end of the paper the author formulates a number of conjectures on the homology of groups of the form $F/N'$. The notion of homological identity of a group is introduced, and the problem of describing the homological identities of free solvable and free nilpotent groups is posed. Bibliography: 9 titles.
@article{SM_1990_67_1_a17,
     author = {Yu. V. Kuz'min},
     title = {On some properties of free {Abelian} extensions},
     journal = {Sbornik. Mathematics},
     pages = {303--315},
     publisher = {mathdoc},
     volume = {67},
     number = {1},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1990_67_1_a17/}
}
TY  - JOUR
AU  - Yu. V. Kuz'min
TI  - On some properties of free Abelian extensions
JO  - Sbornik. Mathematics
PY  - 1990
SP  - 303
EP  - 315
VL  - 67
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1990_67_1_a17/
LA  - en
ID  - SM_1990_67_1_a17
ER  - 
%0 Journal Article
%A Yu. V. Kuz'min
%T On some properties of free Abelian extensions
%J Sbornik. Mathematics
%D 1990
%P 303-315
%V 67
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1990_67_1_a17/
%G en
%F SM_1990_67_1_a17
Yu. V. Kuz'min. On some properties of free Abelian extensions. Sbornik. Mathematics, Tome 67 (1990) no. 1, pp. 303-315. http://geodesic.mathdoc.fr/item/SM_1990_67_1_a17/