The~strong zero theorem for an~elliptic boundary value problem in an~angle
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 67 (1990) no. 1, pp. 283-302
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Sufficient algebraic conditions are given under which the solution of a homogeneous elliptic boundary value problem with constant coefficients in an angle, which has a zero of infinite order at the vertex, vanishes identically. If the angle equals $\pi$ or $2\pi$, the sufficient conditions are satisfied by all elliptic boundary value problems. The same is true in the case of an arbitrary angle if the principal part of the elliptic operator is a power of a second order operator. 
Bibliography: 17 titles.
			
            
            
            
          
        
      @article{SM_1990_67_1_a16,
     author = {V. A. Kozlov},
     title = {The~strong zero theorem for an~elliptic boundary value problem in an~angle},
     journal = {Sbornik. Mathematics},
     pages = {283--302},
     publisher = {mathdoc},
     volume = {67},
     number = {1},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1990_67_1_a16/}
}
                      
                      
                    V. A. Kozlov. The~strong zero theorem for an~elliptic boundary value problem in an~angle. Sbornik. Mathematics, Tome 67 (1990) no. 1, pp. 283-302. http://geodesic.mathdoc.fr/item/SM_1990_67_1_a16/
