The strong zero theorem for an elliptic boundary value problem in an angle
Sbornik. Mathematics, Tome 67 (1990) no. 1, pp. 283-302 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Sufficient algebraic conditions are given under which the solution of a homogeneous elliptic boundary value problem with constant coefficients in an angle, which has a zero of infinite order at the vertex, vanishes identically. If the angle equals $\pi$ or $2\pi$, the sufficient conditions are satisfied by all elliptic boundary value problems. The same is true in the case of an arbitrary angle if the principal part of the elliptic operator is a power of a second order operator. Bibliography: 17 titles.
@article{SM_1990_67_1_a16,
     author = {V. A. Kozlov},
     title = {The~strong zero theorem for an~elliptic boundary value problem in an~angle},
     journal = {Sbornik. Mathematics},
     pages = {283--302},
     year = {1990},
     volume = {67},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1990_67_1_a16/}
}
TY  - JOUR
AU  - V. A. Kozlov
TI  - The strong zero theorem for an elliptic boundary value problem in an angle
JO  - Sbornik. Mathematics
PY  - 1990
SP  - 283
EP  - 302
VL  - 67
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1990_67_1_a16/
LA  - en
ID  - SM_1990_67_1_a16
ER  - 
%0 Journal Article
%A V. A. Kozlov
%T The strong zero theorem for an elliptic boundary value problem in an angle
%J Sbornik. Mathematics
%D 1990
%P 283-302
%V 67
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1990_67_1_a16/
%G en
%F SM_1990_67_1_a16
V. A. Kozlov. The strong zero theorem for an elliptic boundary value problem in an angle. Sbornik. Mathematics, Tome 67 (1990) no. 1, pp. 283-302. http://geodesic.mathdoc.fr/item/SM_1990_67_1_a16/

[1] Kondratev V. A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Tr. MMO, 16 (1967), 209–292 | Zbl

[2] Kondratev V. A., “O gladkosti resheniya zadachi Dirikhle dlya ellipticheskikh uravnenii vtorogo poryadka v kusochno-gladkoi oblasti”, Differents. uravneniya, 6:10 (1970), 1831–1843 | MR | Zbl

[3] Mazya V. G., Plamenevskii B. A., “Ob ellipticheskikh kraevykh zadachakh v oblasti s kusochno-gladkoi granitsei”, Tr. simpoz. po mekhanike sploshnoi sredy i rodstvennym problemam analiza, Metsniereba, Tbilisi, 1973, 171–181

[4] Mazya V. G., Plamenevskii B. A., “Otsenki funktsii Grina i shauderovskie otsenki reshenii ellipticheskikh kraevykh zadach v dvugrannom ugle”, Sib. matem. zhurn., 19:5 (1978), 1065–1082 | MR

[5] Komech A. I., “Ellipticheskie kraevye zadachi na mnogoobraziyakh s kusochno-gladkoi granitsei”, Matem. sb., 92(134) (1973), 89–134 | Zbl

[6] Mazya V. G., Plamenevskii B. A., “O kraevykh zadachakh dlya ellipticheskogo uravneniya vtorogo poryadka v oblasti s rebrami”, Vestn. LGU. Matematika. Mekhanika. Astronomiya, 1975, no. 1, 102–108 | Zbl

[7] Eskin G., “Boundary-value problems for second-order elliptic equations in domains with corners”, Proc. of Symposia in Pure Math., 43 (1985), 105–131 | MR | Zbl

[8] Khermander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, 3, Mir, M., 1987 | MR

[9] Landis E. M., “Nekotorye voprosy kachestvennoi teorii ellipticheskikh uravnenii vtorogo poryadka”, UMN, 18:1 (1963), 3–62 | MR | Zbl

[10] Nadirashvili N. S., “O edinstvennosti i ustoichivosti prodolzheniya s mnozhestva na oblast resheniya ellipticheskogo uravneniya”, Matem. zametki, 40:2 (1986), 218–225 | MR | Zbl

[11] Mazya V. G., Plamenevskii B. A., “O psevdoanalitichnosti reshenii vozmuschennogo poligarmonicheskogo uravneniya v $R^n$”, Problemy matematicheskoi fiziki, 9, LGU, 1979, 75–91 | MR

[12] Money C. B., Nirenberg L., “On the analyticity of the solutions of linear elliptic systems of partial differential equations”, Comm. Pure Appl. Math., 1957, no. 10, 271–290 | MR

[13] Kozlov V. A., “Asimptotika spektra operatornykh puchkov, porozhdennykh ellipticheskimi kraevymi zadachami v ugle”, Nekotorye prilozheniya funktsonalnogo analiza k zadacham matematicheskoi fiziki (Tr. seminara im. S. L. Soboleva), Institut matematiki, Novosibirsk, 1988, 82–96

[14] Agranovich M. S, Vishik M. I., “Ellipticheskie zadachi s parametrom i parabolicheskie zadachi obschego vida”, UMN, 19 (1964), 53–161 | Zbl

[15] Dauge M., “Second membre analytique pour un probleme aux limites elliptique d'ordre $2m$ sur un polygone”, Seminaire Equations aux derivees partielles. II, Univ. de Nantes., 1981–1982, 227–252

[16] Shamaev A. S., “O povedenii reshenii differentsialnykh uravnenii v polupolose”, UMN, 35:1 (1980), 219–220 | MR | Zbl

[17] Zhdanovich V. F., “Formuly dlya nulei polinomov Dirikhle i kvazipolinomov”, DAN, 135:5 (1960), 1046–1049 | Zbl