Three-dimensional Poincaré complexes: homotopy classification and splitting
Sbornik. Mathematics, Tome 67 (1990) no. 1, pp. 261-282 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{SM_1990_67_1_a15,
     author = {V. G. Turaev},
     title = {Three-dimensional {Poincar\'e} complexes: homotopy classification and splitting},
     journal = {Sbornik. Mathematics},
     pages = {261--282},
     year = {1990},
     volume = {67},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1990_67_1_a15/}
}
TY  - JOUR
AU  - V. G. Turaev
TI  - Three-dimensional Poincaré complexes: homotopy classification and splitting
JO  - Sbornik. Mathematics
PY  - 1990
SP  - 261
EP  - 282
VL  - 67
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1990_67_1_a15/
LA  - en
ID  - SM_1990_67_1_a15
ER  - 
%0 Journal Article
%A V. G. Turaev
%T Three-dimensional Poincaré complexes: homotopy classification and splitting
%J Sbornik. Mathematics
%D 1990
%P 261-282
%V 67
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1990_67_1_a15/
%G en
%F SM_1990_67_1_a15
V. G. Turaev. Three-dimensional Poincaré complexes: homotopy classification and splitting. Sbornik. Mathematics, Tome 67 (1990) no. 1, pp. 261-282. http://geodesic.mathdoc.fr/item/SM_1990_67_1_a15/

[1] Brauder V., Perestroiki odnosvyaznykh mnogoobrazii, Nauka, M., 1984 | MR

[2] Cockoroft W. H Swan R. G., “On the homotopy type of certain two-dimensional complexes”, Proc. London Math. Soc., 11:2 (1961), 193–202 | DOI | MR

[3] Eckmann B., Linnell P., “Poincare duality groups in dimension two. II”, Comment. Math. Helv., 58 (1983), 111–114 | DOI | MR | Zbl

[4] Eckmann B., Muller H., “Poincare duality groups in dimension two”, Comment. Math. Helv., 55 (1980), 510–520 | DOI | MR | Zbl

[5] Hendrics H., “Obstruction theory in $2$-dimensional topology: an extension theorem”, J. London Math. Soc. (2), 16:1 (1977), 160–164 | DOI | MR

[6] Hillman J. A., “Seifert fibre spaces and Poincare duality groups”, Math. Z., 190 (1985), 365–369 | DOI | MR | Zbl

[7] Hillman J. A., “Three-dimensional Poincare duality groups which are extensions”, Math. Z., 195 (1987), 89–92 | DOI | MR | Zbl

[8] Hilton P., Homotopy theory and duality, Gordon and Breach, N.-Y., 1965 | MR

[9] Johnson F. E. A., Wall C. T. C., “On groups satisfying Poincare duality”, Ann. Math., 96:3 (1972), 592–598 | DOI | MR | Zbl

[10] Kyposh A. G., Teoriya grupp, Nauka, M., 1967 | MR

[11] Milnor J., “Groups which act on Sn without fixed points”, Amer. J. Math., 1957, 623–630 | MR | Zbl

[12] Stollings Dzh., Teoriya grupp i trekhmernye mnogoobraziya. Algebraicheskaya topologiya. Vvedenie, Mir, M., 1977 | Zbl

[13] Swamp G. A., “On the theorem of C. B. Thomas”, J. London Math. Soc. (2), 8:1 (1974), 13–21 | DOI | MR

[14] Thomas C. B., “Splitting theorems for certain $PD^3$-groups”, Math. Z., 186 (1984), 201–209 | DOI | MR | Zbl

[15] Turaev V. G., “Fundamentalnye gruppy mnogoobrazii i kompleksov Puankare”, Matem. sb., 110(152) (1979), 278–296 | MR | Zbl

[16] Turaev V. G., “Trekhmernye kompleksy Puankare: klassifikatsiya i rasscheplenie”, DAN SSSR, 257:3 (1981), 551–552 | MR | Zbl

[17] Wall C. T. C., “Finiteness conditions for $CW$-complexes”, Ann. Math., 81:1 (1965), 56–69 | DOI | MR

[18] Wall C. T. C., “Finiteness conditions for $CW$-complexes. II”, Proc. Royal. Soc, ser. A, 295:1441 (1966), 129–139 | DOI | MR | Zbl

[19] Wall C. T. C., “Poincare complexes. I”, Ann. Math., 86:2 (1967), 213–245 | DOI | MR | Zbl

[20] Wall C. T. C., Surgery on compact manifolds, Academic Press, London, 1970 | MR