Locally representable varieties of Lie algebras
Sbornik. Mathematics, Tome 67 (1990) no. 1, pp. 249-259 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A description is obtained for locally representable varieties of Lie algebras, i.e., varieties in which an arbitrary finitely generated algebra has a faithful representation of finite dimension over an extension of the ground field. In the case of an infinite field $\Phi$ a variety $V$ of Lie algebras is locally representable if and only if the following two conditions hold: 1) $zy^nx=\sum\limits_{j=1}^n\alpha_jy^jzy^{n-j}x$ is an identity in $V$ for some $\alpha_1,\dots,\alpha_n$ in $\Phi$; and 2) an arbitrary finitely generated algebra in $V$ lies in a product $N_cN_d$ of nilpotent varieties, where $d=1$ if $\operatorname{char}\Phi=0$. Bibliography: 13 titles.
@article{SM_1990_67_1_a14,
     author = {M. V. Zaicev},
     title = {Locally representable varieties of {Lie~algebras}},
     journal = {Sbornik. Mathematics},
     pages = {249--259},
     year = {1990},
     volume = {67},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1990_67_1_a14/}
}
TY  - JOUR
AU  - M. V. Zaicev
TI  - Locally representable varieties of Lie algebras
JO  - Sbornik. Mathematics
PY  - 1990
SP  - 249
EP  - 259
VL  - 67
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1990_67_1_a14/
LA  - en
ID  - SM_1990_67_1_a14
ER  - 
%0 Journal Article
%A M. V. Zaicev
%T Locally representable varieties of Lie algebras
%J Sbornik. Mathematics
%D 1990
%P 249-259
%V 67
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1990_67_1_a14/
%G en
%F SM_1990_67_1_a14
M. V. Zaicev. Locally representable varieties of Lie algebras. Sbornik. Mathematics, Tome 67 (1990) no. 1, pp. 249-259. http://geodesic.mathdoc.fr/item/SM_1990_67_1_a14/

[1] Maltsev A. I., “O predstavlenii beskonechnykh algebr”, Matem. sb., 13(55) (1943), 263–286 | Zbl

[2] Ananin A. Z., “Lokalno finitno approksimiruemye i lokalno predstavimye mnogoobraziya algebr”, Algebra i logika, 16:1 (1977), 3–23 | MR | Zbl

[3] Zaitsev M. V., “Lokalno finitno approksimiruemye mnogoobraziya algebr Li”, Matem. zametki, 44 (1988), 352–361 | MR

[4] Zaitsev M. V., “Matrichnye predstavleniya beskonechnomernykh algebr Li”, UMN, 44:1 (1989), 199–200 | MR | Zbl

[5] Bakhturin Yu. A., Tozhdestva v algebrakh Li, Nauka, M., 1986 | MR

[6] Burbaki N., Gruppy i algebry Li, Gl. I–III, Mir, M., 1976 | MR

[7] Zaitsev M. V., “Finitnaya approksimiruemost i nëterovost konechno porozhdennykh algebr Li”, Matem. sb., 136(178) (1988), 500–509 | MR

[8] Beidar K. K., “K teoremam A. I. Maltseva o matrichnykh predstavleniyakh algebr”, UMN, 41:5 (1986), 161–162 | MR | Zbl

[9] Vakhturin Yu. A., “Ob approksimatsii algebr Li”, Matem. zametki, 12 (1972), 713–716 | MR

[10] Braun A., “The radical in a finitely generated $PI$-algebras”, Bull. Amer. Math. Soc., 7 (1982), 385–386 | DOI | MR | Zbl

[11] Levin J. A., “Matrix representation for associative algebras”, Trans. Amer. Math. Soc., 188 (1974), 293–317 | DOI | MR

[12] Razmyslov Yu. P., “O radikale Dzhekobsona v $PI$-algebrakh”, Algebra i logika, 13:3 (1974), 337–360 | MR | Zbl

[13] Mischenko S. P., “Variant teoremy o vysote dlya algebr Li”, KhIKh Vsesoyuznaya algebraicheskaya konferentsiya. Tezisy soobschenii, Ch. II, Lvov, 1987, 189