Locally representable varieties of Lie~algebras
Sbornik. Mathematics, Tome 67 (1990) no. 1, pp. 249-259

Voir la notice de l'article provenant de la source Math-Net.Ru

A description is obtained for locally representable varieties of Lie algebras, i.e., varieties in which an arbitrary finitely generated algebra has a faithful representation of finite dimension over an extension of the ground field. In the case of an infinite field $\Phi$ a variety $V$ of Lie algebras is locally representable if and only if the following two conditions hold: 1) $zy^nx=\sum\limits_{j=1}^n\alpha_jy^jzy^{n-j}x$ is an identity in $V$ for some $\alpha_1,\dots,\alpha_n$ in $\Phi$; and 2) an arbitrary finitely generated algebra in $V$ lies in a product $N_cN_d$ of nilpotent varieties, where $d=1$ if $\operatorname{char}\Phi=0$. Bibliography: 13 titles.
@article{SM_1990_67_1_a14,
     author = {M. V. Zaicev},
     title = {Locally representable varieties of {Lie~algebras}},
     journal = {Sbornik. Mathematics},
     pages = {249--259},
     publisher = {mathdoc},
     volume = {67},
     number = {1},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1990_67_1_a14/}
}
TY  - JOUR
AU  - M. V. Zaicev
TI  - Locally representable varieties of Lie~algebras
JO  - Sbornik. Mathematics
PY  - 1990
SP  - 249
EP  - 259
VL  - 67
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1990_67_1_a14/
LA  - en
ID  - SM_1990_67_1_a14
ER  - 
%0 Journal Article
%A M. V. Zaicev
%T Locally representable varieties of Lie~algebras
%J Sbornik. Mathematics
%D 1990
%P 249-259
%V 67
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1990_67_1_a14/
%G en
%F SM_1990_67_1_a14
M. V. Zaicev. Locally representable varieties of Lie~algebras. Sbornik. Mathematics, Tome 67 (1990) no. 1, pp. 249-259. http://geodesic.mathdoc.fr/item/SM_1990_67_1_a14/