Locally representable varieties of Lie~algebras
Sbornik. Mathematics, Tome 67 (1990) no. 1, pp. 249-259
Voir la notice de l'article provenant de la source Math-Net.Ru
A description is obtained for locally representable varieties of Lie algebras, i.e., varieties in which an arbitrary finitely generated algebra has a faithful representation of finite dimension over an extension of the ground field. In the case of an infinite field $\Phi$ a variety $V$ of Lie algebras is locally representable if and only if the following two conditions hold:
1) $zy^nx=\sum\limits_{j=1}^n\alpha_jy^jzy^{n-j}x$ is an identity in $V$ for some $\alpha_1,\dots,\alpha_n$ in $\Phi$; and
2) an arbitrary finitely generated algebra in $V$ lies in a product $N_cN_d$ of nilpotent varieties, where $d=1$ if $\operatorname{char}\Phi=0$.
Bibliography: 13 titles.
@article{SM_1990_67_1_a14,
author = {M. V. Zaicev},
title = {Locally representable varieties of {Lie~algebras}},
journal = {Sbornik. Mathematics},
pages = {249--259},
publisher = {mathdoc},
volume = {67},
number = {1},
year = {1990},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1990_67_1_a14/}
}
M. V. Zaicev. Locally representable varieties of Lie~algebras. Sbornik. Mathematics, Tome 67 (1990) no. 1, pp. 249-259. http://geodesic.mathdoc.fr/item/SM_1990_67_1_a14/