Prime graph components of finite simple groups
Sbornik. Mathematics, Tome 67 (1990) no. 1, pp. 235-247

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite group and $\pi(G)$ the set of prime factors of its order. The prime graph of $G$ is the graph with vertex-set $\pi(G)$, two vertices $p$ and $q$ being joined by an edge whenever $G$ contains an element of order $pq$. This article contains an explicit description of the primes in each of the connected components of the prime graphs of the finite simple groups of Lie type of even characteristic. This solves question 9.16 of the “Kourovka Notebook”. Bibliography: 15 titles.
@article{SM_1990_67_1_a13,
     author = {A. S. Kondrat'ev},
     title = {Prime graph components of finite simple groups},
     journal = {Sbornik. Mathematics},
     pages = {235--247},
     publisher = {mathdoc},
     volume = {67},
     number = {1},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1990_67_1_a13/}
}
TY  - JOUR
AU  - A. S. Kondrat'ev
TI  - Prime graph components of finite simple groups
JO  - Sbornik. Mathematics
PY  - 1990
SP  - 235
EP  - 247
VL  - 67
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1990_67_1_a13/
LA  - en
ID  - SM_1990_67_1_a13
ER  - 
%0 Journal Article
%A A. S. Kondrat'ev
%T Prime graph components of finite simple groups
%J Sbornik. Mathematics
%D 1990
%P 235-247
%V 67
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1990_67_1_a13/
%G en
%F SM_1990_67_1_a13
A. S. Kondrat'ev. Prime graph components of finite simple groups. Sbornik. Mathematics, Tome 67 (1990) no. 1, pp. 235-247. http://geodesic.mathdoc.fr/item/SM_1990_67_1_a13/