Prime graph components of finite simple groups
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 67 (1990) no. 1, pp. 235-247
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $G$ be a finite group and $\pi(G)$ the set of prime factors of its order. The prime graph of $G$ is the graph with vertex-set $\pi(G)$, two vertices $p$ and $q$ being joined by an edge whenever $G$ contains an element of order $pq$. This article contains an explicit description of the primes in each of the connected components of the prime graphs of the finite simple groups of Lie type of even characteristic. This solves question 9.16 of the “Kourovka Notebook”.
Bibliography: 15 titles.
			
            
            
            
          
        
      @article{SM_1990_67_1_a13,
     author = {A. S. Kondrat'ev},
     title = {Prime graph components of finite simple groups},
     journal = {Sbornik. Mathematics},
     pages = {235--247},
     publisher = {mathdoc},
     volume = {67},
     number = {1},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1990_67_1_a13/}
}
                      
                      
                    A. S. Kondrat'ev. Prime graph components of finite simple groups. Sbornik. Mathematics, Tome 67 (1990) no. 1, pp. 235-247. http://geodesic.mathdoc.fr/item/SM_1990_67_1_a13/
