The correspondence principle in quantum field theory and relativistic boson string theory
Sbornik. Mathematics, Tome 67 (1990) no. 1, pp. 209-233 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The author constructs the Schrödinger representation in the quantum theory of fields, strings, and membranes on a mathematical level of rigor. This representation is based on the theory of pseudodifferential operators on an infinite-dimensional superspace, developed by the author within the framework of functional superanalysis. In the Schrödinger representation, the author realizes all the basic operators of quantum mechanics with fermion-boson coordinates, the operators of quantum field theory (including supersymmetric field theory), and the operators of the quantum and field theory of strings and membranes (Hamiltonians of fields with polynomial self-action in a space of arbitrary dimension. Virasoro operators, the BRST charge operator which forms the basis of boson string gauge theory, the gauge-invariant Hamiltonian of a boson string, and the Hamiltonian of a supermembrane). It should be noted that the representation constructed here does not satisfy the canonical axiomatics of quantum theory ? the state space is not Hilbert space. Bibliography: 45 titles.
@article{SM_1990_67_1_a12,
     author = {A. Yu. Khrennikov},
     title = {The correspondence principle in quantum field theory and relativistic boson string theory},
     journal = {Sbornik. Mathematics},
     pages = {209--233},
     year = {1990},
     volume = {67},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1990_67_1_a12/}
}
TY  - JOUR
AU  - A. Yu. Khrennikov
TI  - The correspondence principle in quantum field theory and relativistic boson string theory
JO  - Sbornik. Mathematics
PY  - 1990
SP  - 209
EP  - 233
VL  - 67
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1990_67_1_a12/
LA  - en
ID  - SM_1990_67_1_a12
ER  - 
%0 Journal Article
%A A. Yu. Khrennikov
%T The correspondence principle in quantum field theory and relativistic boson string theory
%J Sbornik. Mathematics
%D 1990
%P 209-233
%V 67
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1990_67_1_a12/
%G en
%F SM_1990_67_1_a12
A. Yu. Khrennikov. The correspondence principle in quantum field theory and relativistic boson string theory. Sbornik. Mathematics, Tome 67 (1990) no. 1, pp. 209-233. http://geodesic.mathdoc.fr/item/SM_1990_67_1_a12/

[1] Vladimirov V. S, Volovin I. V., “Superanaliz. I. Differentsialnoe ischislenie”, TMF, 59:1 (1984), 3–27 | MR | Zbl

[2] Vladimirov V. S, Volovin I. V., “Superanaliz. II. Integralnoe ischislenie”, TMF, 1984, no. 2, 169–198 | Zbl

[3] Volovin I. V., “$\Lambda$-supermnogoobraziya i rassloeniya”, DAN SSSR, 269:3 (1983), 524–528 | MR

[4] Khrennikov A. Yu., “Superanaliz: obobschennye funktsii i psevdodifferentsialnye operatory”, TMF, 73:3 (1987), 420–429 | MR | Zbl

[5] Khrennikov A. Yu., “Beskonechnomernye psevdodifferentsialnye operatory”, Izv. AN SSSR. Matematika, 51:6 (1987), 1265–1291 | MR

[6] Khrennikov A. Yu., “Feinmanovskie mery na lokalno vypuklykh prostranstvakh”, Sib. matem. zhurn., 29:4 (1988), 180–189 | MR

[7] Khrennikov A. Yu., “Psevdodifferentsialnye uravneniya v funktsionalnom superanalize I: Metod preobrazovaniya Fure”, Differents. uravneniya, 24:12 (1988), 1712–1723 | MR

[8] Khrennikov A. Yu., “Psevdodifferentsialnye uravneniya v funktsionalnom superanalize II: Formula Feinmana–Katsa”, Differents. uravneniya, 25:2 (1989), 314–324 | MR

[9] Batalin I. A., Fradkin F. S., “A generalized canonical formalism and quantization of reducible gauge theories”, Phys. Lett. B., 124 (1983), 157–1164 | DOI | MR

[10] Gitman D. M., Tyutin I. V., Kanonicheskoe kvantovanie sistem so svyazyami, Nauka, M., 1986 | MR | Zbl

[11] Schwinger F., “A Note to the Quantum Dinamical Principle”, Phil. Mag., 44 (1953), 1171–1182 | MR

[12] Bogolyubov N. N., Shirkov D. V., Vvedenie v teoriyu kvantovannykh polei, Nauka, M., 1984 | MR

[13] Dirak P., Lektsii po kvantovoi teorii polya, Mir, M., 1971

[14] Berezin F. A., Metod vtorichnogo kvantovaniya, Nauka, M., 1986 | MR | Zbl

[15] Ogievetskii V. I., Mezinnesku L., “Simmetrii mezhdu bozonami i fermionami i superpolya”, UFN, 117:4 (1975), 637–683 | MR

[16] Ogievetskii V. I., Sokachev E. S., “Supersimmetriya i superprostranstvo”, Matematicheskii analiz, 22, VINITI, M., 1984, 124–186

[17] Salam A., Strathdee J., “Superfields and Fermi–Bose symmetry”, Phys. Rev. D., 11:6 (1975), 1521–1535 | DOI | MR

[18] Salam A., Strathdee J., “Super-gauge transformation”, Nucl. Phys. B., 76:3 (1974), 477–482 | DOI | MR

[19] Wess J., Zumino B., “Superspace formulation of supergravity”, Phys. Lett. B., 66:1 (1977), 361–364 | DOI | MR

[20] Volovin I. V., “Supersimmetrichnaya teoriya Yanga–Millsa kak golomorfnoe rassloenie nad tvistorami i superavtodualnost”, TMF, 55:1 (1983), 39–43 | MR

[21] Volovin I. V., “Supersimmetrichnaya teoriya Yanga–Millsa i metod obratnoi zadachi rasseyaniya”, TMF, 57:3 (1983), 469–473 | MR

[22] Witten E., “New issues in manifolds of $SU(3)$ holonomy”, Nucl. Phys. B., 268:1 (1986), 79–112 | DOI | MR

[23] Witten E., “Interacting field theory of open superstrings”, Nucl. Phys. B., 276:2 (1986), 291–324 | DOI | MR

[24] Siegel W., “Classical superstring mechanics”, Nucl. Phys. B., 263:1 (1986), 93–108 | DOI | MR

[25] Virasoro M. A., “Subsidiary conditions and ghosts in dual-resonance models”, Phys. Rev. D., 1:10 (1970), 2933–2936 | DOI

[26] Neven A., West P. C., “Gauge covariant local formulation of Bosonic strings”, Nucl. Phys. B., 268:1 (1986), 125–150 | DOI | MR

[27] Aref'eva I. Ya., Volovich I. V., “Gauge-invatiant string interaction and nonassociative algebra”, Phys. Lett. B., 182:2 (1986), 159–163 | DOI | MR

[28] Aref'eva I. Ya., Volovich I. V., “String field algebra”, Phys. Lett. B., 182:3/4 (1986), 312–316 | DOI | MR

[29] Berezin F. A., Vvedenie v algebru i analiz s antikommutiruyuschimi peremennymi, MGU, M., 1983 | MR

[30] Edvards R., Funktsionalnyi analiz, Mir, M., 1970

[31] Khrennikov A. Yu., “Vtorichnoe kvantovanie i psevdodifferentsialnye operatory”, TMF, 66:3 (1986), 339–349 | MR | Zbl

[32] Khrennikov A. Yu., “Mera Feinmana v fazovom prostranstve i simvoly beskonechnomernykh psevdodifferentsialnykh operatorov”, Matem. zametki, 37:5 (1985), 734–742 | MR | Zbl

[33] Nirenberg L., “Abstraktnaya forma nelineinoi teoremy Koshi–Kovalevskoi”, Lektsii po nelineinomu funktsionalnomu analizu, Mir, M., 1982, 203–220 | MR

[34] Khrennikov A. Yu., “Funktsionalnyi superanaliz”, UMN, 43:2 (1988), 87–114 | MR | Zbl

[35] Becchi C, Rouet A., Stora R., “The abelian Higgs Kibble model. Unitary of the $S$-operator”, Phys. Lett., 52:3 (1974), 344–346 | DOI | MR

[36] Tyutin I. V., Kalibrovochnaya invariantnost v teorii polya i statisticheskoi fizike v operatornoi formulirovke, Preprint No 39, FIAN, M., 1975 | MR

[37] Floratos E., Kazama Y., Tamvakis K., “On the relation between the gauge-covariant formulation of string field theories”, Phys. Lett. B., 166:3 (1986), 295–300 | DOI | MR

[38] Thorn K., Kugo T., Kunitomo H., Dgawa K., “Manifestly covariant field theory of interacting string”, Phys Lett. B., 172:2 (1986), 186–210 | DOI | MR

[39] Dirak P., Printsipy kvantovoi mekhaniki, Nauka, M., 1979 | MR

[40] Blokhintsev D. I., Printsipialnye voprosy kvantovoi mekhaniki, Nauka, M., 1987

[41] Karasev M. V., Maslov V. P., “Asimptoticheskoe i geometricheskoe kvantovaniya”, UMN, 39 (1984), 115–178 | MR

[42] Khrennikov A. Yu., “Uravneniya s beskonechnomernymi psevdodifferentsialnymi operatorami”, DAN SSSR, 267:6 (1982), 1313–1318 | MR | Zbl

[43] Khrennikov A. Yu., “Fundamentalnye resheniya evolyutsionnykh psevdodifferentsialnykh operatorov”, Differents. uravneniya, 21:2 (1985), 346–348 | MR | Zbl

[44] Khrennikov A. Yu., “Differentsialnye uravneniya v lokalno vypuklykh prostranstvakh i evolyutsionnye psevdodifferentsialnye uravneniya”, Differents. uravneniya., 22:9 (1986), 1596–1602 | MR

[45] Khrennikov A. Yu., “Teorema suschestvovaniya resheniya stokhasticheskogo differentsialnogo uravneniya v yadernom prostranstve Freshe”, Teoriya veroyatnostei i matem. statistika, no. 1, Kiev, 1985, 85–89 | MR