Local volume computations in the Siegel–Tamagawa formula
Sbornik. Mathematics, Tome 66 (1990) no. 2, pp. 447-460 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The author studies the local factors in Siegel–Tamagawa products and the products themselves. To do this he examines integral structures in linear algebraic groups and gives a construction of an invariant density which induces the canonical Haar measure at $p$-adic places. The local volume computations reduce to the study of the factors at places of bad reduction. An exact expression is obtained for the weight of the genus of a unimodular lattice. Bibliography: 13 titles.
@article{SM_1990_66_2_a9,
     author = {V. E. Voskresenskii},
     title = {Local volume computations in the {Siegel{\textendash}Tamagawa} formula},
     journal = {Sbornik. Mathematics},
     pages = {447--460},
     year = {1990},
     volume = {66},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1990_66_2_a9/}
}
TY  - JOUR
AU  - V. E. Voskresenskii
TI  - Local volume computations in the Siegel–Tamagawa formula
JO  - Sbornik. Mathematics
PY  - 1990
SP  - 447
EP  - 460
VL  - 66
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1990_66_2_a9/
LA  - en
ID  - SM_1990_66_2_a9
ER  - 
%0 Journal Article
%A V. E. Voskresenskii
%T Local volume computations in the Siegel–Tamagawa formula
%J Sbornik. Mathematics
%D 1990
%P 447-460
%V 66
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1990_66_2_a9/
%G en
%F SM_1990_66_2_a9
V. E. Voskresenskii. Local volume computations in the Siegel–Tamagawa formula. Sbornik. Mathematics, Tome 66 (1990) no. 2, pp. 447-460. http://geodesic.mathdoc.fr/item/SM_1990_66_2_a9/

[1] Borel A., Kharish-Chandra, “Nekotorye svoistva grupp adelei, svyazannykh s algebraicheskimi gruppami”, Matematika (Sb. perevodov), 8:2 (1964), 73–75 | MR

[2] Opo T., “Sur un propriété arithmétique des groupes commutatifs”, Bull. Soc. Math. France, 85 (1957), 307–323 | MR | Zbl

[3] Veil A., “Adeli i algebraicheskie gruppy”, Matematika (Sb. perevodov), 8:4 (1964), 3–74

[4] Opo T., “Arithmetic of algebraic tori”, Ann. Math., 78 (1963), 47–73 | DOI | MR | Zbl

[5] Lenglends P. P., “Ob'em fundamentalnoi oblasti dlya nekotorykh arifmeticheskikh podgrupp grupp Shevalle”, Arifmeticheskie gruppy i avtomorfnye funktsii, Mir, M., 1969, 80–88 | MR

[6] Steinberg R., Lektsii o gruppakh Shevalle, Mir, M., 1975 | MR | Zbl

[7] Serr Zh.-P., Kurs arifmetiki, Mir, M., 1972 | MR | Zbl

[8] O'Meara O. T., Introduction to quadratic forms, Springer Verlag, Berlin–Heidelberg–New-York, 1973

[9] Dedonne Zh., Geometriya klassicheskikh grupp, Mir, M., 1974 | MR

[10] Trojan A., “The integral extention of isometries of quadratic forms over local fields”, Canad. Jour. Math., 18 (1966), 920–942 | MR | Zbl

[11] Milnor Dzh., Khyuzmoller D., Simmetricheskie bilineinye formy, Nauka, M., 1986 | MR | Zbl

[12] Kassels Dzh., Ratsionalnye kvadratichnye formy, Mir, M., 1982 | MR

[13] Conway J. H., Sloane N. J. A., “The unimodular lattices of dimension up to 23 and the Minkowski–Siegel mass constants”, Europ. J. Combinatorics, 3 (1982), 219–231 | MR | Zbl