Symplectic structure on a Grassmannian fibration
Sbornik. Mathematics, Tome 66 (1990) no. 2, pp. 439-446
Cet article a éte moissonné depuis la source Math-Net.Ru
The author describes a canonical structure on a Grassmannian fibration whose fiber is a Grassmann manifold of the tangent spaces of a smooth manifold. This structure generalizes the symplectic structure on the cotangent bundle. This symplectic form takes its values in a vector space or even in a vector bundle. This structure is canonical; it is uniquely defined by a smooth manifold. Bibliography: 5 titles.
@article{SM_1990_66_2_a8,
author = {G. D. Berishvili},
title = {Symplectic structure on {a~Grassmannian} fibration},
journal = {Sbornik. Mathematics},
pages = {439--446},
year = {1990},
volume = {66},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1990_66_2_a8/}
}
G. D. Berishvili. Symplectic structure on a Grassmannian fibration. Sbornik. Mathematics, Tome 66 (1990) no. 2, pp. 439-446. http://geodesic.mathdoc.fr/item/SM_1990_66_2_a8/
[1] Dubrovin B., Novikov S., Fomenko A., Sovremennaya geometriya, Nauka, M., 1979 | MR
[2] Giiemin V., Sternberg S., Geometricheskie asimptotiki, Mir, M., 1981 | MR
[3] Lere Zh., Lagranzhev analiz i kvantovaya mekhanika, Mir, M., 1981 | MR
[4] Abraham R., Marsden J. E., Foundations of Mechanics, Berjamin, London, 1978 | MR
[5] Audin M., These, cobordismes d'immersions Lagrangiennes et Legendriennes, Universite Paris-sud, Paris, 1986