Symplectic structure on a~Grassmannian fibration
Sbornik. Mathematics, Tome 66 (1990) no. 2, pp. 439-446

Voir la notice de l'article provenant de la source Math-Net.Ru

The author describes a canonical structure on a Grassmannian fibration whose fiber is a Grassmann manifold of the tangent spaces of a smooth manifold. This structure generalizes the symplectic structure on the cotangent bundle. This symplectic form takes its values in a vector space or even in a vector bundle. This structure is canonical; it is uniquely defined by a smooth manifold. Bibliography: 5 titles.
@article{SM_1990_66_2_a8,
     author = {G. D. Berishvili},
     title = {Symplectic structure on {a~Grassmannian} fibration},
     journal = {Sbornik. Mathematics},
     pages = {439--446},
     publisher = {mathdoc},
     volume = {66},
     number = {2},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1990_66_2_a8/}
}
TY  - JOUR
AU  - G. D. Berishvili
TI  - Symplectic structure on a~Grassmannian fibration
JO  - Sbornik. Mathematics
PY  - 1990
SP  - 439
EP  - 446
VL  - 66
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1990_66_2_a8/
LA  - en
ID  - SM_1990_66_2_a8
ER  - 
%0 Journal Article
%A G. D. Berishvili
%T Symplectic structure on a~Grassmannian fibration
%J Sbornik. Mathematics
%D 1990
%P 439-446
%V 66
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1990_66_2_a8/
%G en
%F SM_1990_66_2_a8
G. D. Berishvili. Symplectic structure on a~Grassmannian fibration. Sbornik. Mathematics, Tome 66 (1990) no. 2, pp. 439-446. http://geodesic.mathdoc.fr/item/SM_1990_66_2_a8/