Symplectic structure on a~Grassmannian fibration
Sbornik. Mathematics, Tome 66 (1990) no. 2, pp. 439-446
Voir la notice de l'article provenant de la source Math-Net.Ru
The author describes a canonical structure on a Grassmannian fibration whose fiber is a Grassmann manifold of the tangent spaces of a smooth manifold. This structure generalizes the symplectic structure on the cotangent bundle. This symplectic form takes its values in a vector space or even in a vector bundle. This structure is canonical; it is uniquely defined by a smooth manifold.
Bibliography: 5 titles.
@article{SM_1990_66_2_a8,
author = {G. D. Berishvili},
title = {Symplectic structure on {a~Grassmannian} fibration},
journal = {Sbornik. Mathematics},
pages = {439--446},
publisher = {mathdoc},
volume = {66},
number = {2},
year = {1990},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1990_66_2_a8/}
}
G. D. Berishvili. Symplectic structure on a~Grassmannian fibration. Sbornik. Mathematics, Tome 66 (1990) no. 2, pp. 439-446. http://geodesic.mathdoc.fr/item/SM_1990_66_2_a8/