The Fourier–Mellin–Whittacker transform on horospheres of homogeneous
Sbornik. Mathematics, Tome 66 (1990) no. 2, pp. 343-361 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An integral transformation carrying the Laplace–Beltrami operator on a homogeneous symmetric pseudo-Riemannian space of rank 1 into an ordinary differential operator is constructed. Spaces dual with respect to this transformation are determined, along with bounded operators on them. Bibliography: 14 titles.
@article{SM_1990_66_2_a2,
     author = {V. K. Rogov},
     title = {The {Fourier{\textendash}Mellin{\textendash}Whittacker} transform on horospheres of homogeneous},
     journal = {Sbornik. Mathematics},
     pages = {343--361},
     year = {1990},
     volume = {66},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1990_66_2_a2/}
}
TY  - JOUR
AU  - V. K. Rogov
TI  - The Fourier–Mellin–Whittacker transform on horospheres of homogeneous
JO  - Sbornik. Mathematics
PY  - 1990
SP  - 343
EP  - 361
VL  - 66
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1990_66_2_a2/
LA  - en
ID  - SM_1990_66_2_a2
ER  - 
%0 Journal Article
%A V. K. Rogov
%T The Fourier–Mellin–Whittacker transform on horospheres of homogeneous
%J Sbornik. Mathematics
%D 1990
%P 343-361
%V 66
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1990_66_2_a2/
%G en
%F SM_1990_66_2_a2
V. K. Rogov. The Fourier–Mellin–Whittacker transform on horospheres of homogeneous. Sbornik. Mathematics, Tome 66 (1990) no. 2, pp. 343-361. http://geodesic.mathdoc.fr/item/SM_1990_66_2_a2/

[1] Flensted-Jensen M., Analysis on non-riemannian symmetric space, Amer. Math. Soc., Providence, RI, 1986 | MR

[2] Tengstrand A., “Distributions invariant under an orthogenal group of arbitrare signature”, Math. Scand., 8 (1960), 201 | MR | Zbl

[3] Faraut J., “Distributions spheriques les espace hyperboliques”, J. Math. Pures Appl. Ser. 9, 58 (1979), 369 | MR | Zbl

[4] Molchanov V. F., “Formula Plansherelya dlya psevdorimanova prostranstva $SL(3,R)/GL(2,R)$”, Sib. matem. zhurn., 23:5 (1982), 142–151 | MR | Zbl

[5] Molchanov V. F., “Sfericheskie funktsii na psevdorimanovykh simmetricheskikh prostranstvakh ranga $1$”, DAN SSSR, 287:5 (1986), 1054–1058 | MR | Zbl

[6] Karpelevich F. I., “Geometriya geodezicheskikh i sobstvennye funktsii operatora Beltrami–Laplasa na simmetrichnykh prostranstvakh”, Tr. MMO, 14, 1965, 48–185 | Zbl

[7] Rogov V.-B. K., “Operator Beltrami–Laplasa na odnorodnykh simmetricheskikh prostranstvakh ranga 1”, Matem. zametki, 28:1 (1980), 59–66 | MR | Zbl

[8] Araki Sh., “Kornevye sistemy i lokalnaya klassifikatsiya neprivodimykh simmetricheskikh prostranstv”, Matematika (sb. perevodov), 10:1 (1975), 91–126

[9] Rogov V.-B. K., “O sobstvennykh funktsiyakh operatora Beltrami–Laplasa na odnorodnykh simmetricheskikh prostranstvakh ranga 1”, Matem. sb., 104(146) (1977), 292–313 | MR | Zbl

[10] Gelfand I. M., Shilov G. E., Obobschennye funktsii. Vyp. 3. Nekotorye voprosy teorii differentsialnykh uravnenii, Fizmatgiz, M., 1958 | MR | Zbl

[11] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Nauka, M., 1971

[12] Rogov V.-B. K., Kompaktifikatsiya odnorodnogo simmetricheskogo prostranstva ranga 1 i orisfericheskaya proektsiya tochki, 2137-84. Dep. VINITI

[13] Gelfand I. M., Shilov G. E., Obobschennye funktsii. Vyp. 1. Obobschennye funktsii i deistviya nad nimi, Fizmatgiz, M., 1959 | MR | Zbl

[14] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, gipergeometricheskaya funktsiya, funktsii Lezhandra, t. 1, Nauka, M., 1965