The Fourier--Mellin--Whittacker transform on horospheres of homogeneous
Sbornik. Mathematics, Tome 66 (1990) no. 2, pp. 343-361
Voir la notice de l'article provenant de la source Math-Net.Ru
An integral transformation carrying the Laplace–Beltrami operator on a homogeneous symmetric pseudo-Riemannian space of rank 1 into an ordinary differential operator is constructed. Spaces dual with respect to this transformation are determined, along with bounded operators on them.
Bibliography: 14 titles.
@article{SM_1990_66_2_a2,
author = {V. K. Rogov},
title = {The {Fourier--Mellin--Whittacker} transform on horospheres of homogeneous},
journal = {Sbornik. Mathematics},
pages = {343--361},
publisher = {mathdoc},
volume = {66},
number = {2},
year = {1990},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1990_66_2_a2/}
}
V. K. Rogov. The Fourier--Mellin--Whittacker transform on horospheres of homogeneous. Sbornik. Mathematics, Tome 66 (1990) no. 2, pp. 343-361. http://geodesic.mathdoc.fr/item/SM_1990_66_2_a2/