An imbedding theorem for groups and its corollaries
Sbornik. Mathematics, Tome 66 (1990) no. 2, pp. 541-553

Voir la notice de l'article provenant de la source Math-Net.Ru

An “economical” imbedding theorem is proved for at most a denumerable set of groups of finite or denumerable cardinality without involution in a group with “few” subgroups. This result is used to solve a series of problems about groups satisfying the descending chain condition for subgroups; in particular, a nondenumerable group with this condition is constructed. Bibliography: 20 titles.
@article{SM_1990_66_2_a14,
     author = {V. N. Obraztsov},
     title = {An imbedding theorem for groups and its corollaries},
     journal = {Sbornik. Mathematics},
     pages = {541--553},
     publisher = {mathdoc},
     volume = {66},
     number = {2},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1990_66_2_a14/}
}
TY  - JOUR
AU  - V. N. Obraztsov
TI  - An imbedding theorem for groups and its corollaries
JO  - Sbornik. Mathematics
PY  - 1990
SP  - 541
EP  - 553
VL  - 66
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1990_66_2_a14/
LA  - en
ID  - SM_1990_66_2_a14
ER  - 
%0 Journal Article
%A V. N. Obraztsov
%T An imbedding theorem for groups and its corollaries
%J Sbornik. Mathematics
%D 1990
%P 541-553
%V 66
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1990_66_2_a14/
%G en
%F SM_1990_66_2_a14
V. N. Obraztsov. An imbedding theorem for groups and its corollaries. Sbornik. Mathematics, Tome 66 (1990) no. 2, pp. 541-553. http://geodesic.mathdoc.fr/item/SM_1990_66_2_a14/