An imbedding theorem for groups and its corollaries
Sbornik. Mathematics, Tome 66 (1990) no. 2, pp. 541-553 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An “economical” imbedding theorem is proved for at most a denumerable set of groups of finite or denumerable cardinality without involution in a group with “few” subgroups. This result is used to solve a series of problems about groups satisfying the descending chain condition for subgroups; in particular, a nondenumerable group with this condition is constructed. Bibliography: 20 titles.
@article{SM_1990_66_2_a14,
     author = {V. N. Obraztsov},
     title = {An imbedding theorem for groups and its corollaries},
     journal = {Sbornik. Mathematics},
     pages = {541--553},
     year = {1990},
     volume = {66},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1990_66_2_a14/}
}
TY  - JOUR
AU  - V. N. Obraztsov
TI  - An imbedding theorem for groups and its corollaries
JO  - Sbornik. Mathematics
PY  - 1990
SP  - 541
EP  - 553
VL  - 66
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1990_66_2_a14/
LA  - en
ID  - SM_1990_66_2_a14
ER  - 
%0 Journal Article
%A V. N. Obraztsov
%T An imbedding theorem for groups and its corollaries
%J Sbornik. Mathematics
%D 1990
%P 541-553
%V 66
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1990_66_2_a14/
%G en
%F SM_1990_66_2_a14
V. N. Obraztsov. An imbedding theorem for groups and its corollaries. Sbornik. Mathematics, Tome 66 (1990) no. 2, pp. 541-553. http://geodesic.mathdoc.fr/item/SM_1990_66_2_a14/

[1] Higman G., Neumann B. H., Neumann H., “Embedding theorems for groups”, J. London Math. Soc., 24 (1949), 247–254 | DOI | MR

[2] Kurosh A. G., Chernikov S. N., “Razreshimye i nilpotentnye gruppy”, UMN, 2:3 (1947), 18–59 | MR

[3] Kurosh A. G., Teoriya grupp, Nauka, M., 1967 | MR | Zbl

[4] Robinson D. J. S., Finiteness conditions and generalized soluble groups, v.1, Verlag, Berlin, 1972

[5] Deryabina G. S., O vlozhimosti konechnykh grupp nechetnogo poryadka v kvazikonechnye gruppy, Dep. No 4179, VINITI, M., 1984

[6] Chernikov S. N., “O lokalno razreshimykh gruppakh, udovletvoryayuschikh usloviyu minimalnosti dlya podgrupp”, Matem. sb., 28(72) (1951), 119–129 | Zbl

[7] Shunkov V. P., “O probleme minimalnosti dlya lokalno konechnykh grupp”, Algebra i logika, 9:2 (1970), 220–248 | MR | Zbl

[8] Olshanskii A. Yu., “Beskonechnye gruppy s tsiklicheskimi podgruppami”, DAN SSSR, 245:4 (1979), 785–787 | MR

[9] Zaitsev D. I., “O gruppakh, kotorye udovletvoryayut slabomu usloviyu minimalnosti”, Matem. sb., 78(120) (1969), 323–331

[10] Baer R., “Polimini max grupper”, Hath. Ann., 175 (1968), 1–43 | DOI | MR | Zbl

[11] Shelah S., “On a problem of Kurosh, Jonsson group and applications”, Word Problems, II, North-Holland Publ. Co., Amsterdam, 1980, 373–394 | MR

[12] Kourovskaya tetrad: Nereshennye voprosy teorii grupp, Novosibirsk, 1986

[13] Olshanskii A. Yu., “Gruppy ogranichennogo perioda s podgruppami prostogo poryadka”, Algebra i logika, 21 (1982), 553–618 | MR

[14] Atabekyan V. S, Ivanov S. V., Dva zamechaniya o gruppakh ogranichennogo perioda, Dep. No 2243, VINITI, M., 1987

[15] Olshanskii A. Yu., “Mnogoobraziya, v kotorykh vse konechnye gruppy abelevy”, Matem. sb., 126(148) (1985), 59–82 | MR

[16] Obraztsov V. N., O kvazikonechnykh gruppakh, Tezisy dokl. X Vsesoyuz. simpoz. po teorii grupp, Minsk, 1986

[17] Obraztsov V. N., “Teorema o vlozheniyakh grupp i ee sledstviya”, Tez. soobschenii 19 Vsesoyuz. algebr. konf., Ch. 1, Lvov, 1987

[18] Lindon R., Shupp P., Kombinatornaya teoriya grupp, Mir, M., 1980 | MR

[19] Adyan S. I., Problema Bernsaida i tozhdestva v gruppakh, Nauka, M., 1975 | MR | Zbl

[20] Olshanskii A. Yu., “O teoreme Novikova–Adyana”, Matem. sb., 118(160) (1982), 203–235 | MR