@article{SM_1990_66_2_a11,
author = {B. V. Kapitonov},
title = {On exponential decay as $t\to\infty$ of solutions of an exterior boundary value problem for the {Maxwell} system},
journal = {Sbornik. Mathematics},
pages = {475--498},
year = {1990},
volume = {66},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1990_66_2_a11/}
}
TY - JOUR AU - B. V. Kapitonov TI - On exponential decay as $t\to\infty$ of solutions of an exterior boundary value problem for the Maxwell system JO - Sbornik. Mathematics PY - 1990 SP - 475 EP - 498 VL - 66 IS - 2 UR - http://geodesic.mathdoc.fr/item/SM_1990_66_2_a11/ LA - en ID - SM_1990_66_2_a11 ER -
B. V. Kapitonov. On exponential decay as $t\to\infty$ of solutions of an exterior boundary value problem for the Maxwell system. Sbornik. Mathematics, Tome 66 (1990) no. 2, pp. 475-498. http://geodesic.mathdoc.fr/item/SM_1990_66_2_a11/
[1] Mikhailov V. P., “O printsipe predelnoi amplitudy”, DAN SSSR, 159 (1964), 750–752
[2] Muravei L. L., “Asimptoticheskoe povedenie pri bolshikh znacheniyakh vremeni reshenii vtoroi i tretei vneshnikh kraevykh zadach dlya volnovogo uravneniya s dvumya prostranstvennymi peremennymi”, Tr. MIAN, 126 (1973), 73–144 | MR | Zbl
[3] Muravei L. A., “Ob asimptoticheskom povedenii pri bolshikh znacheniyakh vremeni resheniya odnoi vneshnei kraevoi zadachi dlya volnovogo uravneniya”, DAN SSSR, 220:2 (1975), 289–292 | MR | Zbl
[4] Morawetz C. S., “The decay of solutions of the exterior initial boundary value problem for the wave equation”, Comm. Pure Appl. Math., 14:3 (1961), 561–568 | DOI | MR | Zbl
[5] Morawetz C. S., “The limiting amplitude principle”, Comm. Pure Appl. Math., 15:3 (1962), 349–361 | DOI | MR | Zbl
[6] Morawetz C. S., “Exponential decay of solutions of the wave equation”, Comm. Pure Appl. Math., 19:4 (1966), 439–444 | DOI | MR | Zbl
[7] Tamura H., “Local energy decays for wave equations with time-dependent coefficients”, Nagoya Math. J., 71 (1978), 107–123 | MR | Zbl
[8] Tamura H., “On the decay of the local energy for wave equations with a moving obstacle”, Nagoya Math. J., 71 (1978), 125–147 | MR | Zbl
[9] Zachmanoglou E., “The decay of the solution of the initial boundary value problem for hyperbolic equation”, J. Math. and Mech. and Appl. Sci., 13, 504–515 | MR | Zbl
[10] Morawetz C. S., Ralston J., Strauss W., “Decay of solutions of the wave equation outside nontrapping obstacles”, Comm. Pure Appl. Math., 30:4 (1977), 447–508 | DOI | MR | Zbl
[11] Strauss W., “Dispersal of waves vanishing on the boundary of an exterior domain”, Comm. Pure Appl. Math., 28:2 (1975), 265–278 | DOI | MR | Zbl
[12] Bloom C., Kazarinoff H., “Local energy decay for a class of nonstarshaped bodies”, Arch. Rat. Mech. and Anal., 55 (1974), 73–85 | MR | Zbl
[13] Morawetz C. S., Notes on time decay and scattering for some hyperbolic problems, Regional Conference Series in Applied Mathematics, 19, SIAM, 1975 | MR | Zbl
[14] Moravets K., “Odna teorema ob ubyvanii reshenii uravnenii Maksvella”, UMN, 29:2 (1974), 233–240 | MR
[15] Moravets K., “Ubyvanie energii vne zvezdnykh prepyatstvii”, Prilozhenie 3 v kn. P. Laks, R. Fillips, Teoriya rasseyaniya, Mir, M., 1971, 254–257 | MR
[16] Kapitonov B. V., “Ubyvanie reshenii vneshnei kraevoi zadachi i printsip predelnoi amplitudy dlya odnoi giperbolicheskoi sistemy”, DAN SSSR, 286:5, 1057–1062 | MR | Zbl
[17] Kapitonov B. V., “Ob ubyvanii pri $t\to\infty$ reshenii zadachi Koshi dlya sistemy Maksvella v neodnorodnoi srede”, Kachestvennyi analiz reshenii differentsialnykh uravnenii s chastnymi proizvodnymi, In-t matematiki, Novosibirsk, 1985, 100–109 | MR
[18] Солонников В. А. “Pereopredelennye ellipticheskie kraevye zadachi”, 3apiski nauch. seminarov LOMI, 21 (1971), 112–158 | Zbl
[19] Trev F., Vvedenie v teoriyu psevdodifferentsialnykh operatorov i integralnykh operatorov Fure, t. I, Mir, M., 1984 | Zbl
[20] Fujiwara D., “On a special class of pseudo-differential operators”, J. Fac. Sci., Tokyo University, 14:2 (1967. Ser. 1), 221–249 | MR | Zbl
[21] Wilcox G., “An expansion theorem for electromagnetic fields”, Comm. Pure Appl. Math., 9:2 (1956), 115–134 | DOI | MR | Zbl