On exponential decay as $t\to\infty$ of solutions of an exterior boundary value problem for the Maxwell system
Sbornik. Mathematics, Tome 66 (1990) no. 2, pp. 475-498 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that the solution of the boundary value problem for the Maxwell system with the Leontovich condition on the boundary in the exterior of a bounded starlike domain decays exponentially in time. Bibliography: 21 titles.
@article{SM_1990_66_2_a11,
     author = {B. V. Kapitonov},
     title = {On exponential decay as $t\to\infty$ of solutions of an exterior boundary value problem for the {Maxwell} system},
     journal = {Sbornik. Mathematics},
     pages = {475--498},
     year = {1990},
     volume = {66},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1990_66_2_a11/}
}
TY  - JOUR
AU  - B. V. Kapitonov
TI  - On exponential decay as $t\to\infty$ of solutions of an exterior boundary value problem for the Maxwell system
JO  - Sbornik. Mathematics
PY  - 1990
SP  - 475
EP  - 498
VL  - 66
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1990_66_2_a11/
LA  - en
ID  - SM_1990_66_2_a11
ER  - 
%0 Journal Article
%A B. V. Kapitonov
%T On exponential decay as $t\to\infty$ of solutions of an exterior boundary value problem for the Maxwell system
%J Sbornik. Mathematics
%D 1990
%P 475-498
%V 66
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1990_66_2_a11/
%G en
%F SM_1990_66_2_a11
B. V. Kapitonov. On exponential decay as $t\to\infty$ of solutions of an exterior boundary value problem for the Maxwell system. Sbornik. Mathematics, Tome 66 (1990) no. 2, pp. 475-498. http://geodesic.mathdoc.fr/item/SM_1990_66_2_a11/

[1] Mikhailov V. P., “O printsipe predelnoi amplitudy”, DAN SSSR, 159 (1964), 750–752

[2] Muravei L. L., “Asimptoticheskoe povedenie pri bolshikh znacheniyakh vremeni reshenii vtoroi i tretei vneshnikh kraevykh zadach dlya volnovogo uravneniya s dvumya prostranstvennymi peremennymi”, Tr. MIAN, 126 (1973), 73–144 | MR | Zbl

[3] Muravei L. A., “Ob asimptoticheskom povedenii pri bolshikh znacheniyakh vremeni resheniya odnoi vneshnei kraevoi zadachi dlya volnovogo uravneniya”, DAN SSSR, 220:2 (1975), 289–292 | MR | Zbl

[4] Morawetz C. S., “The decay of solutions of the exterior initial boundary value problem for the wave equation”, Comm. Pure Appl. Math., 14:3 (1961), 561–568 | DOI | MR | Zbl

[5] Morawetz C. S., “The limiting amplitude principle”, Comm. Pure Appl. Math., 15:3 (1962), 349–361 | DOI | MR | Zbl

[6] Morawetz C. S., “Exponential decay of solutions of the wave equation”, Comm. Pure Appl. Math., 19:4 (1966), 439–444 | DOI | MR | Zbl

[7] Tamura H., “Local energy decays for wave equations with time-dependent coefficients”, Nagoya Math. J., 71 (1978), 107–123 | MR | Zbl

[8] Tamura H., “On the decay of the local energy for wave equations with a moving obstacle”, Nagoya Math. J., 71 (1978), 125–147 | MR | Zbl

[9] Zachmanoglou E., “The decay of the solution of the initial boundary value problem for hyperbolic equation”, J. Math. and Mech. and Appl. Sci., 13, 504–515 | MR | Zbl

[10] Morawetz C. S., Ralston J., Strauss W., “Decay of solutions of the wave equation outside nontrapping obstacles”, Comm. Pure Appl. Math., 30:4 (1977), 447–508 | DOI | MR | Zbl

[11] Strauss W., “Dispersal of waves vanishing on the boundary of an exterior domain”, Comm. Pure Appl. Math., 28:2 (1975), 265–278 | DOI | MR | Zbl

[12] Bloom C., Kazarinoff H., “Local energy decay for a class of nonstarshaped bodies”, Arch. Rat. Mech. and Anal., 55 (1974), 73–85 | MR | Zbl

[13] Morawetz C. S., Notes on time decay and scattering for some hyperbolic problems, Regional Conference Series in Applied Mathematics, 19, SIAM, 1975 | MR | Zbl

[14] Moravets K., “Odna teorema ob ubyvanii reshenii uravnenii Maksvella”, UMN, 29:2 (1974), 233–240 | MR

[15] Moravets K., “Ubyvanie energii vne zvezdnykh prepyatstvii”, Prilozhenie 3 v kn. P. Laks, R. Fillips, Teoriya rasseyaniya, Mir, M., 1971, 254–257 | MR

[16] Kapitonov B. V., “Ubyvanie reshenii vneshnei kraevoi zadachi i printsip predelnoi amplitudy dlya odnoi giperbolicheskoi sistemy”, DAN SSSR, 286:5, 1057–1062 | MR | Zbl

[17] Kapitonov B. V., “Ob ubyvanii pri $t\to\infty$ reshenii zadachi Koshi dlya sistemy Maksvella v neodnorodnoi srede”, Kachestvennyi analiz reshenii differentsialnykh uravnenii s chastnymi proizvodnymi, In-t matematiki, Novosibirsk, 1985, 100–109 | MR

[18] Солонников В. А. “Pereopredelennye ellipticheskie kraevye zadachi”, 3apiski nauch. seminarov LOMI, 21 (1971), 112–158 | Zbl

[19] Trev F., Vvedenie v teoriyu psevdodifferentsialnykh operatorov i integralnykh operatorov Fure, t. I, Mir, M., 1984 | Zbl

[20] Fujiwara D., “On a special class of pseudo-differential operators”, J. Fac. Sci., Tokyo University, 14:2 (1967. Ser. 1), 221–249 | MR | Zbl

[21] Wilcox G., “An expansion theorem for electromagnetic fields”, Comm. Pure Appl. Math., 9:2 (1956), 115–134 | DOI | MR | Zbl