Cohomology of truncated coinduced representations of Lie algebras of positive characteristic
Sbornik. Mathematics, Tome 66 (1990) no. 2, pp. 461-473 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The author proves that for any $n$-dimensional Lie algebra of characteristic $p>0$ and any $k$, $0\leqslant k\leqslant n$, there exists a finite-dimensional module with nontrivial $k$-cohomology; the nontrivial cocycles of such modules become trivial under some finite-dimensional extension. He also obtains a criterion for the Lie algebra to be nilpotent in terms of irreducible modules with nontrivial cohomology. The proof of these facts is based on a generalization of Shapiro's lemma. The truncated induced and coinduced representations are shown to be the same thing. Bibliography: 22 titles.
@article{SM_1990_66_2_a10,
     author = {A. S. Dzhumadil'daev},
     title = {Cohomology of truncated coinduced representations of {Lie} algebras of positive characteristic},
     journal = {Sbornik. Mathematics},
     pages = {461--473},
     year = {1990},
     volume = {66},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1990_66_2_a10/}
}
TY  - JOUR
AU  - A. S. Dzhumadil'daev
TI  - Cohomology of truncated coinduced representations of Lie algebras of positive characteristic
JO  - Sbornik. Mathematics
PY  - 1990
SP  - 461
EP  - 473
VL  - 66
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1990_66_2_a10/
LA  - en
ID  - SM_1990_66_2_a10
ER  - 
%0 Journal Article
%A A. S. Dzhumadil'daev
%T Cohomology of truncated coinduced representations of Lie algebras of positive characteristic
%J Sbornik. Mathematics
%D 1990
%P 461-473
%V 66
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1990_66_2_a10/
%G en
%F SM_1990_66_2_a10
A. S. Dzhumadil'daev. Cohomology of truncated coinduced representations of Lie algebras of positive characteristic. Sbornik. Mathematics, Tome 66 (1990) no. 2, pp. 461-473. http://geodesic.mathdoc.fr/item/SM_1990_66_2_a10/

[1] Kostrikin A. I., Shafarevich I. R., “Graduirovannye algebry Li konechnoi kharakteristiki”, Izv. AN SSSR. Seriya matem., 33 (1969), 251–322 | MR | Zbl

[2] Dzhekobson N., Algebry Li, M., Mir

[3] Kartan A., Eilenberg S., Gomologicheskaya algebra, IL, M., 1960

[4] Teoriya algebr Li. Topologiya grupp Li, Seminar «Sofus Li», IL, M., 1962

[5] Dzhumadildaev A. S., “O kogomologiyakh modulyarnykh algebr Li”, Matem. sb., 119(161) (1982), 132–149 | MR

[6] Dzhumadildaev A. S., “Neprivodimye predstavleniya silno razreshimykh algebr Li nad polem polozhitelnoi kharakteristiki”, Matem. sb., 123(165) (1984), 212–229 | MR

[7] Dzhumadildaev A. S., “Abelevy rasshireniya modulyarnykh algebr Li”, Algebra i logika, 24:1 (1985), 3–12 | MR

[8] Krylyuk Ya. S., O neprivodimykh modulyakh algebr Li kartanovskogo tipa v konechnoi kharakteristike. I, Dep. VINITI No 3863-78

[9] Seligman G., Modular Lie algebras, Springer-Verlag, N. Y., 1967 | MR | Zbl

[10] Block R. E., Wilson R. L., “On filtered Lie algebras and divided power algebras”, Commun. Algebra, 3:7 (1975), 571–589 | DOI | MR | Zbl

[11] Blattner R. J., “Induced and produced representations of Lie algebras”, Trans. Amer. Math. Soc., 144 (1969), 457–474 | DOI | MR

[12] Mackey G. W., “Imprimitivity for representations of locally compact groups. I”, Proc. Nat. Acad. Sci. U. S. A., 35 (1949), 537–545 | DOI | MR | Zbl

[13] Hochshild G., Serre J.-P., “Cohomology of Lie algebras”, Ann. Math., 57 (1953), 591–603 | DOI | MR

[14] Hochshild G., “Note on Lie algebra kernels in characteristic $p$”, Proc. Amer. Math. Soc., 7:4 (1956), 551–557 | DOI | MR

[15] Hochshild G., “Lie algebra kernels and cohomology”, Amer. J. Math., 76 (1954), 698–716 | DOI | MR

[16] Hochshild G., “Cohomology classes of finite type and finite dimensional kernels for Lie algebras”, Amer. J. Math., 76 (1954), 763–778 | DOI | MR

[17] Koszul J. L., “Sur les modules de representation des algébres de Lie résolubles”, Amer. J. Math., 76:3 (1954), 535–554 | DOI | MR | Zbl

[18] Dixmier J., “Cohomologie des algébres de Lie nilpotentes”, Acta Scient. Math. Szeged., 16:3–4 (1955), 246–250 | MR | Zbl

[19] Iwasawa K., “On the representations of Lie algebras”, Japan J. Math., 19 (1948), 405–426 | MR

[20] Eilenberg S., MacLane S., “Cohomology theory in abstract groups. II. Group extensions with a nonabelian kernel”, Ann. Math., 48 (1947), 326–341 | DOI | MR | Zbl

[21] Knopfmacher I., “On Lie algebra obstructions”, Bull. Austral. Math. Soc., 1:2 (1969), 281–288 | DOI | MR | Zbl

[22] Zassenhaus H., “Darstellungstheorie nilpotenter Lie ringe bei characteristik $p>0$”, J. de Crelle, 182 (1940), 150–155 | MR | Zbl