Cohomology of truncated coinduced representations of Lie algebras of positive characteristic
Sbornik. Mathematics, Tome 66 (1990) no. 2, pp. 461-473

Voir la notice de l'article provenant de la source Math-Net.Ru

The author proves that for any $n$-dimensional Lie algebra of characteristic $p>0$ and any $k$, $0\leqslant k\leqslant n$, there exists a finite-dimensional module with nontrivial $k$-cohomology; the nontrivial cocycles of such modules become trivial under some finite-dimensional extension. He also obtains a criterion for the Lie algebra to be nilpotent in terms of irreducible modules with nontrivial cohomology. The proof of these facts is based on a generalization of Shapiro's lemma. The truncated induced and coinduced representations are shown to be the same thing. Bibliography: 22 titles.
@article{SM_1990_66_2_a10,
     author = {A. S. Dzhumadil'daev},
     title = {Cohomology of truncated coinduced representations of {Lie} algebras of positive characteristic},
     journal = {Sbornik. Mathematics},
     pages = {461--473},
     publisher = {mathdoc},
     volume = {66},
     number = {2},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1990_66_2_a10/}
}
TY  - JOUR
AU  - A. S. Dzhumadil'daev
TI  - Cohomology of truncated coinduced representations of Lie algebras of positive characteristic
JO  - Sbornik. Mathematics
PY  - 1990
SP  - 461
EP  - 473
VL  - 66
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1990_66_2_a10/
LA  - en
ID  - SM_1990_66_2_a10
ER  - 
%0 Journal Article
%A A. S. Dzhumadil'daev
%T Cohomology of truncated coinduced representations of Lie algebras of positive characteristic
%J Sbornik. Mathematics
%D 1990
%P 461-473
%V 66
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1990_66_2_a10/
%G en
%F SM_1990_66_2_a10
A. S. Dzhumadil'daev. Cohomology of truncated coinduced representations of Lie algebras of positive characteristic. Sbornik. Mathematics, Tome 66 (1990) no. 2, pp. 461-473. http://geodesic.mathdoc.fr/item/SM_1990_66_2_a10/