Cohomology of truncated coinduced representations of Lie algebras of positive characteristic
Sbornik. Mathematics, Tome 66 (1990) no. 2, pp. 461-473
Voir la notice de l'article provenant de la source Math-Net.Ru
The author proves that for any $n$-dimensional Lie algebra of characteristic $p>0$ and any $k$, $0\leqslant k\leqslant n$, there exists a finite-dimensional module with nontrivial $k$-cohomology; the nontrivial cocycles of such modules become trivial under some finite-dimensional extension. He also obtains a criterion for the Lie algebra to be nilpotent in terms of irreducible modules with nontrivial cohomology. The proof of these facts is based on a generalization of Shapiro's lemma. The truncated induced and coinduced representations are shown to be the same thing.
Bibliography: 22 titles.
@article{SM_1990_66_2_a10,
author = {A. S. Dzhumadil'daev},
title = {Cohomology of truncated coinduced representations of {Lie} algebras of positive characteristic},
journal = {Sbornik. Mathematics},
pages = {461--473},
publisher = {mathdoc},
volume = {66},
number = {2},
year = {1990},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1990_66_2_a10/}
}
TY - JOUR AU - A. S. Dzhumadil'daev TI - Cohomology of truncated coinduced representations of Lie algebras of positive characteristic JO - Sbornik. Mathematics PY - 1990 SP - 461 EP - 473 VL - 66 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1990_66_2_a10/ LA - en ID - SM_1990_66_2_a10 ER -
A. S. Dzhumadil'daev. Cohomology of truncated coinduced representations of Lie algebras of positive characteristic. Sbornik. Mathematics, Tome 66 (1990) no. 2, pp. 461-473. http://geodesic.mathdoc.fr/item/SM_1990_66_2_a10/