$n$-shapes and $n$-cohomotopy groups of compacta
Sbornik. Mathematics, Tome 66 (1990) no. 2, pp. 329-342 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper continues the study of the notion of $n$-shape previously introduced by the author. The $n$-shape category and $n$-shape functor are defined, and they are given an axiomatic description. Also defined are the $n$-cohomotopy groups of compacta. A proof is given of the $n$-shape invariance of these groups, and a connection established between them and the generalized cohomotopy groups of Borsuk. Bibliography: 14 titles.
@article{SM_1990_66_2_a1,
     author = {A. Ch. Chigogidze},
     title = {$n$-shapes and $n$-cohomotopy groups of compacta},
     journal = {Sbornik. Mathematics},
     pages = {329--342},
     year = {1990},
     volume = {66},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1990_66_2_a1/}
}
TY  - JOUR
AU  - A. Ch. Chigogidze
TI  - $n$-shapes and $n$-cohomotopy groups of compacta
JO  - Sbornik. Mathematics
PY  - 1990
SP  - 329
EP  - 342
VL  - 66
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1990_66_2_a1/
LA  - en
ID  - SM_1990_66_2_a1
ER  - 
%0 Journal Article
%A A. Ch. Chigogidze
%T $n$-shapes and $n$-cohomotopy groups of compacta
%J Sbornik. Mathematics
%D 1990
%P 329-342
%V 66
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1990_66_2_a1/
%G en
%F SM_1990_66_2_a1
A. Ch. Chigogidze. $n$-shapes and $n$-cohomotopy groups of compacta. Sbornik. Mathematics, Tome 66 (1990) no. 2, pp. 329-342. http://geodesic.mathdoc.fr/item/SM_1990_66_2_a1/

[1] Bestvina M., Characterizing $k$-dimensional universal Menger compacta, Dissertation, Knoxville, 1984 | MR

[2] Borsuk K., “On a generalization of the cohomotopy group”, Bull. Acad. Polon. Sci., 8 (1960), 615–620 | MR | Zbl

[3] Borsuk K., Theory of Shape, PWN, Warszawa, 1975 | MR | Zbl

[4] Chapman T. A., “On some applications of infinite-dimensional manifolds to the theory of shape”, Fund. Math., 76 (1972), 181–193 | MR | Zbl

[5] Dranishnikov A. N., “Universalnye mengerovskie kompakty i universalnye otobrazheniya”, Matem. sb., 129(171) (1986), 121–139 | MR

[6] Godlewski S., “Homomorphisms of cohomotopy groups induced by fundamental classes”, Bull. Acad. Polon. Sci., 17 (1969), 277–283 | MR | Zbl

[7] Hu S. T., Theory of Retracts, Wayne State University Press, Detroit, 1965 | MR | Zbl

[8] Mardesic S., “Shapes for topological spaces”, Gen. Topol. Appl., 3 (1973), 265–282 | DOI | MR | Zbl

[9] Smirnov Yu. M., “Sovremennoe sostoyanie teorii sheipov. Posleslovie”, V knige Borsuk K. Teoriya sheipov, Mir, M., 1976

[10] Spanier E. H., “Borsuk's cohomotopy groups”, Ann. of Math., 50 (1949), 203–245 | DOI | MR | Zbl

[11] Stinrod N., Eilenberg S., Osnovaniya algebraicheskoi topologii, IL, M., 1958

[12] Chigogidze A. Ch., “Nebikompaktnye absolyutnye ekstenzory v razmernosti $n$, $n$-myagkie otobrazheniya i ikh primeneniya”, Izv. AN SSSR, 50 (1986), 156–180 | MR | Zbl

[13] Chigogidze A. Ch., “O kompaktakh, lezhaschikh v $n$-mernom universalnom kompakte Mengera i imeyuschikh v nem gomeomorfnye dopolneniya”, DAN SSSR, 298:3 (1988), 552–556 | MR | Zbl

[14] Chigogidze A. Ch., “Kompakty, lezhaschie v $n$-mernom universalnom kompakte Mengera i imeyuschie v nem gomeomorfnye dopolneniya”, Matem. sb., 133(175) (1987), 481–496 | MR | Zbl