Deformations of the Lie algebras $W_n(\mathbf m)$
Sbornik. Mathematics, Tome 66 (1990) no. 1, pp. 169-187
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper the Gerstenhaber deformations of a general Lie algebra of Cartan type $W_n(\mathbf m)$ are computed. In particular, it is shown that $W_n(\mathbf m)$ is rigid over a perfect field. The Albert–Frank algebra is generalized to the case of several variables, and a criterion for such an algebra to be simple is obtained.
Bibliography: 13 titles.
@article{SM_1990_66_1_a8,
author = {A. S. Dzhumadil'daev},
title = {Deformations of the {Lie} algebras $W_n(\mathbf m)$},
journal = {Sbornik. Mathematics},
pages = {169--187},
publisher = {mathdoc},
volume = {66},
number = {1},
year = {1990},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1990_66_1_a8/}
}
A. S. Dzhumadil'daev. Deformations of the Lie algebras $W_n(\mathbf m)$. Sbornik. Mathematics, Tome 66 (1990) no. 1, pp. 169-187. http://geodesic.mathdoc.fr/item/SM_1990_66_1_a8/