Deformations of the Lie algebras $W_n(\mathbf m)$
Sbornik. Mathematics, Tome 66 (1990) no. 1, pp. 169-187

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the Gerstenhaber deformations of a general Lie algebra of Cartan type $W_n(\mathbf m)$ are computed. In particular, it is shown that $W_n(\mathbf m)$ is rigid over a perfect field. The Albert–Frank algebra is generalized to the case of several variables, and a criterion for such an algebra to be simple is obtained. Bibliography: 13 titles.
@article{SM_1990_66_1_a8,
     author = {A. S. Dzhumadil'daev},
     title = {Deformations of the {Lie} algebras $W_n(\mathbf m)$},
     journal = {Sbornik. Mathematics},
     pages = {169--187},
     publisher = {mathdoc},
     volume = {66},
     number = {1},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1990_66_1_a8/}
}
TY  - JOUR
AU  - A. S. Dzhumadil'daev
TI  - Deformations of the Lie algebras $W_n(\mathbf m)$
JO  - Sbornik. Mathematics
PY  - 1990
SP  - 169
EP  - 187
VL  - 66
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1990_66_1_a8/
LA  - en
ID  - SM_1990_66_1_a8
ER  - 
%0 Journal Article
%A A. S. Dzhumadil'daev
%T Deformations of the Lie algebras $W_n(\mathbf m)$
%J Sbornik. Mathematics
%D 1990
%P 169-187
%V 66
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1990_66_1_a8/
%G en
%F SM_1990_66_1_a8
A. S. Dzhumadil'daev. Deformations of the Lie algebras $W_n(\mathbf m)$. Sbornik. Mathematics, Tome 66 (1990) no. 1, pp. 169-187. http://geodesic.mathdoc.fr/item/SM_1990_66_1_a8/