Classification of simple graded Lie algebras with nonsemisimple
Sbornik. Mathematics, Tome 66 (1990) no. 1, pp. 145-158

Voir la notice de l'article provenant de la source Math-Net.Ru

Two series $\mathscr R$ and $T$ of exceptional Lie algebras of characteristic 3 are constructed. It is proved that a simple 1-graded Lie algebra $L$ over an algebraically closed field of characteristic $p>2$ with component $L_0$ containing a noncentral radical is isomorphic either to one of the Lie algebras of the Cartan series $W$, $S$, and $\mathscr K$ with grading of type $(0,1)$, or to one of the Lie algebras of the series $\mathscr R$ and $T$, or to an exceptional Kostrikin–Frank Lie algebra. Bibliography: 16 titles.
@article{SM_1990_66_1_a6,
     author = {M. I. Kuznetsov},
     title = {Classification of simple graded {Lie} algebras with nonsemisimple},
     journal = {Sbornik. Mathematics},
     pages = {145--158},
     publisher = {mathdoc},
     volume = {66},
     number = {1},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1990_66_1_a6/}
}
TY  - JOUR
AU  - M. I. Kuznetsov
TI  - Classification of simple graded Lie algebras with nonsemisimple
JO  - Sbornik. Mathematics
PY  - 1990
SP  - 145
EP  - 158
VL  - 66
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1990_66_1_a6/
LA  - en
ID  - SM_1990_66_1_a6
ER  - 
%0 Journal Article
%A M. I. Kuznetsov
%T Classification of simple graded Lie algebras with nonsemisimple
%J Sbornik. Mathematics
%D 1990
%P 145-158
%V 66
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1990_66_1_a6/
%G en
%F SM_1990_66_1_a6
M. I. Kuznetsov. Classification of simple graded Lie algebras with nonsemisimple. Sbornik. Mathematics, Tome 66 (1990) no. 1, pp. 145-158. http://geodesic.mathdoc.fr/item/SM_1990_66_1_a6/