Classification of simple graded Lie algebras with nonsemisimple
Sbornik. Mathematics, Tome 66 (1990) no. 1, pp. 145-158 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Two series $\mathscr R$ and $T$ of exceptional Lie algebras of characteristic 3 are constructed. It is proved that a simple 1-graded Lie algebra $L$ over an algebraically closed field of characteristic $p>2$ with component $L_0$ containing a noncentral radical is isomorphic either to one of the Lie algebras of the Cartan series $W$, $S$, and $\mathscr K$ with grading of type $(0,1)$, or to one of the Lie algebras of the series $\mathscr R$ and $T$, or to an exceptional Kostrikin–Frank Lie algebra. Bibliography: 16 titles.
@article{SM_1990_66_1_a6,
     author = {M. I. Kuznetsov},
     title = {Classification of simple graded {Lie} algebras with nonsemisimple},
     journal = {Sbornik. Mathematics},
     pages = {145--158},
     year = {1990},
     volume = {66},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1990_66_1_a6/}
}
TY  - JOUR
AU  - M. I. Kuznetsov
TI  - Classification of simple graded Lie algebras with nonsemisimple
JO  - Sbornik. Mathematics
PY  - 1990
SP  - 145
EP  - 158
VL  - 66
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1990_66_1_a6/
LA  - en
ID  - SM_1990_66_1_a6
ER  - 
%0 Journal Article
%A M. I. Kuznetsov
%T Classification of simple graded Lie algebras with nonsemisimple
%J Sbornik. Mathematics
%D 1990
%P 145-158
%V 66
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1990_66_1_a6/
%G en
%F SM_1990_66_1_a6
M. I. Kuznetsov. Classification of simple graded Lie algebras with nonsemisimple. Sbornik. Mathematics, Tome 66 (1990) no. 1, pp. 145-158. http://geodesic.mathdoc.fr/item/SM_1990_66_1_a6/

[1] Kostrikin A. I., “Modulyarnye variatsii na temu Kartanao”, Mezhdunarodn. kongress matematikov v Nitstse, Nauka, M., 1970, 111–117 | MR

[2] Kostrikin A. I., Shafarevich I. R., “Graduirovannye algebry Li konechnoi kharakteristiki”, Izv. AN SSSR. Ser. matem., 33 (1969), 251–322 | MR | Zbl

[3] Kostrikin A. I., “Nekotorye aspekty teorii algebry Li”, Izbran. vopr. algebry i logiki, Nauka, Sib. otd-nie, Novosibirsk, 1973, 142–160 | MR

[4] Kats V. G., “O klassifikatsii prostykh algebr Li nad polem s nenulevoi kharakteristikoi”, Izv. AN SSSR. Ser. matem., 34 (1970), 385–408 | Zbl

[5] Kuznetsov M. I., “Modulyarnye prostye algebry Li s razreshimoi maksimalnoi podalgebroi”, Matem. sb., 101(143), 77–86 | Zbl

[6] Weisfeiler B., “On subalgebras of simple Lie algebras of characteristic $p>0$”, Trans. Amer. Math. Soc., 286:2 (1984), 471–503 | DOI | MR | Zbl

[7] Frank M., “A new simple Lie algebra of characteristic three”, Proc. Amer. Math. Soc., 38 (1973), 43–46 | DOI | MR | Zbl

[8] Kostrikin A. I., “Parametricheskoe semeistvo prostykh algebr Li”, Izv. AN SSSR. Ser. matem., 34 (1970), 744–756 | MR | Zbl

[9] Kuznetsov M. I., “Graduirovannye algebry Li s nepoluprostoi nulevoi komponentoi”, KhVI Vsesoyuzn. algebraichesk. konf. Tezisy., Ch. 1, Leningr. otd-nie Matem. in-ta, L., 1981, 89–90

[10] Panyukov V. V., “O predstavleniyakh algebr Li v polozhitelnoi kharakteristike”, Vestn. MGU. Ser. 1. Matem. Mekhan., 1983, no. 2, 53–58 | MR | Zbl

[11] Block R. E., “Modules over differential polynomial rings”, Bull. Amer. Math. Soc., 79 (1973), 729–733 | DOI | MR | Zbl

[12] Kuznetsov M. I., “Graded Lie algebras with null component containing sum of commuting ideals”, Commun. Algebra., 12:15 (1984), 1917–1927 | DOI | MR | Zbl

[13] Krylyuk Ya. S., “Moduli nad algebrami Li, dopuskayuschie pervoe kartanovskoe prodolzhenie”, UMN, 34:3 (1979), 203–204 | MR | Zbl

[14] Kuznetsov M. I., Svobodnye moduli ranga $l>1$ nad algebroi razdelennykh stepenei: differentsirovaniya, prodolzheniya Kartana, Dep. v VINITI, No 7524-86, 1986

[15] Kuznetsov M. I., “Algebry Li s podalgebroi korazmernosti $p$”, Izv. AN SSSR. Ser. matem., 40 (1976), 1224–1247 | Zbl

[16] Kuznetsov M. I., “Graduirovannye algebry Li s nulevoi komponentoi, ravnoi summe kommutiruyuschikh idealov”, Matem. sb., 116(158) (1981), 568–574 | MR | Zbl