Measurable strategies in differential games
Sbornik. Mathematics, Tome 66 (1990) no. 1, pp. 127-143 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Nonlinear approach-evasion differential games are considered in which the initial data depend on the time. These games are investigated in the class of strategies that are functions of three variables, namely, the time, the phase variable, and the current value of the other player's control, and are measurable jointly with respect to the time and the phase variable. The ideas of the Pontryagin methods in differential games and Krasovskii's ideas on extremal aiming are developed, and it is shown that measurable strategies have broad applicability. It is proved that measurable strategies are compatible with differential equations with discontinuous right-hand side, and general theorems on the existence of solving measurable strategies in approach-evasion problems are proved, along with some auxiliary assertions. It is shown that the saddle point condition in the small game ensures the existence of solving measurable strategies. An example is given. Bibliography: 14 titles.
@article{SM_1990_66_1_a5,
     author = {R. P. Ivanov},
     title = {Measurable strategies in differential games},
     journal = {Sbornik. Mathematics},
     pages = {127--143},
     year = {1990},
     volume = {66},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1990_66_1_a5/}
}
TY  - JOUR
AU  - R. P. Ivanov
TI  - Measurable strategies in differential games
JO  - Sbornik. Mathematics
PY  - 1990
SP  - 127
EP  - 143
VL  - 66
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1990_66_1_a5/
LA  - en
ID  - SM_1990_66_1_a5
ER  - 
%0 Journal Article
%A R. P. Ivanov
%T Measurable strategies in differential games
%J Sbornik. Mathematics
%D 1990
%P 127-143
%V 66
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1990_66_1_a5/
%G en
%F SM_1990_66_1_a5
R. P. Ivanov. Measurable strategies in differential games. Sbornik. Mathematics, Tome 66 (1990) no. 1, pp. 127-143. http://geodesic.mathdoc.fr/item/SM_1990_66_1_a5/

[1] Pontryagin L. S., “O lineinykh differentsialnykh igrakh. I”, DAN SSSR, 174:6 (1967), 1278–1280 | Zbl

[2] Pontryagin L. S., “O lineinykh differentsialnykh igrakh. II”, DAN SSSR, 175:4 (1967), 764–766 | Zbl

[3] Pontryagin L. S., “Lineinye differentsialnye igry presledovaniya”, Matem. sb., 112(154) (1980), 307–330 | MR | Zbl

[4] Mischenko E. F., Pontryagin L. S., “Lineinye differentsialnye igry”, DAN SSSR, 1967 \mschd 174, no. 1, 27–29

[5] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974 | MR

[6] Krasovskii N. N., Upravlenie dinamicheskoi sistemoi, Nauka, M., 1985 | MR

[7] Aizeks R., Differentsialnye igry, Mir, M., 1967 | MR

[8] Filippov A. F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985 | MR

[9] Scorza-Dragoni G., “Un teorema sulle funzioni countinue rispetto ad un altra variable”, Rend. Semin. Mat. Padova, 17 (1948), 102–106 | MR | Zbl

[10] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, Gostekhizdat, M., 1950

[11] Wazevski T., “Sur tine condition d'existence des fonctions implicites mesurables”, Bull. Acad. Polon. Sci. Ser. math., astr., phys., 9:12 (1961), 861–863 | MR

[12] Davy J. L., “Properties of the solution set of a generalised differential equation”, Bull. Austral. Math. Soc., 6:3 (1972), 379–398 | DOI | MR | Zbl

[13] Filippov A. F., “O nekotorykh voprosakh teorii optimalnogo regulirovaniya”, Vestn. MGU. Ser. 1. Matematika, mekhanika, 1959, no. 2, 25–32 | Zbl

[14] Blagodatskikh V. I., Filippov A. F., “Differentsialnye vklyucheniya i optimalnoe upravlenie”, Tr. MIAN, 169 (1985), 194–252 | MR | Zbl