On the spectral theory of dissipative difference operators of second order
Sbornik. Mathematics, Tome 66 (1990) no. 1, pp. 107-125 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The boundary conditions at infinity are used in a description of all maximal dissipative extensions of the minimal symmetric operator generated in the Hilbert space $l^2$ by the second-order difference expression $$ (\Lambda y)_n=a_{n-1}y_{n-1}+b_ny_n+a_ny_{n+1} $$ in the Weyl limit-circle case, where $n$ runs through the integer points on the half-line or the whole line, and the coefficients $a_n$ and $b_n$ are real. The characteristic functions of the dissipative extensions are computed. Completeness theorems are obtained for the system of eigenvectors and associated vectors. Bibliography: 13 titles.
@article{SM_1990_66_1_a4,
     author = {B. P. Allakhverdiev and G. Sh. Guseinov},
     title = {On the spectral theory of dissipative difference operators of second order},
     journal = {Sbornik. Mathematics},
     pages = {107--125},
     year = {1990},
     volume = {66},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1990_66_1_a4/}
}
TY  - JOUR
AU  - B. P. Allakhverdiev
AU  - G. Sh. Guseinov
TI  - On the spectral theory of dissipative difference operators of second order
JO  - Sbornik. Mathematics
PY  - 1990
SP  - 107
EP  - 125
VL  - 66
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1990_66_1_a4/
LA  - en
ID  - SM_1990_66_1_a4
ER  - 
%0 Journal Article
%A B. P. Allakhverdiev
%A G. Sh. Guseinov
%T On the spectral theory of dissipative difference operators of second order
%J Sbornik. Mathematics
%D 1990
%P 107-125
%V 66
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1990_66_1_a4/
%G en
%F SM_1990_66_1_a4
B. P. Allakhverdiev; G. Sh. Guseinov. On the spectral theory of dissipative difference operators of second order. Sbornik. Mathematics, Tome 66 (1990) no. 1, pp. 107-125. http://geodesic.mathdoc.fr/item/SM_1990_66_1_a4/

[1] Sekefalvi-Nad B., Foyash Ch., Garmonicheskii analiz operatorov v gilbertovom prostranstve, Mir, M., 1970 | MR

[2] Lakc P., Fillips R., Teoriya rasseyaniya, Mir, M., 1971 | MR

[3] Adamyan V. M., Arov D. Z., “Ob unitarnykh stsepleniyakh poluunitarnykh operatorov”, Matem. issledovaniya, 1, no. 2, Kishinev, 1966, 3–64 | MR

[4] Pavlov B. S., “Teoriya dilatatsii i spektralnyi analiz nesamosopryazhennykh differentsialnykh operatorov”, Teoriya operatorov v lineinykh prostranstvakh (Tr. 7-i zimnei shkoly, Drogobych 1974), M., 1976, 3–69 | MR | Zbl

[5] Pavlov B. S., “O razlozhenii po sobstvennym funktsiyam absolyutno nepreryvnogo spektra dissipativnogo operatora.”, Vestn. LGU. Matematika. Mekhanika. Astronomiya, 1975, no. 1, 130–137 | Zbl

[6] Pavlov B. S., “Ob usloviyakh otdelimosti spektralnykh komponent dissipativnogo operatora”, Izv. AN SSSR. Ser. matem., 39 (1975), 123–148 | MR | Zbl

[7] Pavlov B. S., “Samosopryazhennaya dilatatsiya dissipativnogo operatora Shredingera i razlozhenie po ego sobstvennym funktsiyam”, Matem. sb., 102(144) (1977), 511–536 | MR | Zbl

[8] Pavlov B. S., “Spectral theory of nonselfadjoint differential operators”, Proc. Int. Congr. Math., V. 2 (Warszawa, Aug. 16–24, 1983), Warszawa, Amsterdam e.a., 1984, 1011–1025 | MR | Zbl

[9] Akhiezer N. I., Klassicheskaya problema momentov, Fizmatgiz, M., 1961

[10] Berezanskii Yu. M., Razlozheniya po sobstvennym funktsiyam samosopryazhennykh operatorov, Naukova dumka, Kiev, 1965 | MR

[11] Gorbachuk V. P., Gorbachuk M. L., Granichnye zadachi dlya differentsialno-operatornykh uravnenii, Naukova dumka, Kiev, 1984 | MR | Zbl

[12] Welstead S. T., “Boundary conditions at infinity for difference equations of limit-circle type”, J. Math. Anal. Appl., 89:2 (1982), 442–461 | DOI | MR | Zbl

[13] Pavlov B. S., “O sovmestnoi polnote sistemy sobstvennykh funktsii szhatiya i ego sopryazhennogo”, Problemy matematicheskoi fiziki, no. 5, Izd-vo LGU, 1971, 101–102