On the spectral theory of dissipative difference operators of second order
Sbornik. Mathematics, Tome 66 (1990) no. 1, pp. 107-125

Voir la notice de l'article provenant de la source Math-Net.Ru

The boundary conditions at infinity are used in a description of all maximal dissipative extensions of the minimal symmetric operator generated in the Hilbert space $l^2$ by the second-order difference expression $$ (\Lambda y)_n=a_{n-1}y_{n-1}+b_ny_n+a_ny_{n+1} $$ in the Weyl limit-circle case, where $n$ runs through the integer points on the half-line or the whole line, and the coefficients $a_n$ and $b_n$ are real. The characteristic functions of the dissipative extensions are computed. Completeness theorems are obtained for the system of eigenvectors and associated vectors. Bibliography: 13 titles.
@article{SM_1990_66_1_a4,
     author = {B. P. Allakhverdiev and G. Sh. Guseinov},
     title = {On the spectral theory of dissipative difference operators of second order},
     journal = {Sbornik. Mathematics},
     pages = {107--125},
     publisher = {mathdoc},
     volume = {66},
     number = {1},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1990_66_1_a4/}
}
TY  - JOUR
AU  - B. P. Allakhverdiev
AU  - G. Sh. Guseinov
TI  - On the spectral theory of dissipative difference operators of second order
JO  - Sbornik. Mathematics
PY  - 1990
SP  - 107
EP  - 125
VL  - 66
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1990_66_1_a4/
LA  - en
ID  - SM_1990_66_1_a4
ER  - 
%0 Journal Article
%A B. P. Allakhverdiev
%A G. Sh. Guseinov
%T On the spectral theory of dissipative difference operators of second order
%J Sbornik. Mathematics
%D 1990
%P 107-125
%V 66
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1990_66_1_a4/
%G en
%F SM_1990_66_1_a4
B. P. Allakhverdiev; G. Sh. Guseinov. On the spectral theory of dissipative difference operators of second order. Sbornik. Mathematics, Tome 66 (1990) no. 1, pp. 107-125. http://geodesic.mathdoc.fr/item/SM_1990_66_1_a4/