On the spectral theory of dissipative difference operators of second order
Sbornik. Mathematics, Tome 66 (1990) no. 1, pp. 107-125
Voir la notice de l'article provenant de la source Math-Net.Ru
The boundary conditions at infinity are used in a description of all maximal dissipative extensions of the minimal symmetric operator generated in the Hilbert space $l^2$ by the second-order difference expression
$$
(\Lambda y)_n=a_{n-1}y_{n-1}+b_ny_n+a_ny_{n+1}
$$
in the Weyl limit-circle case, where $n$ runs through the integer points on the half-line or the whole line, and the coefficients $a_n$ and $b_n$ are real.
The characteristic functions of the dissipative extensions are computed. Completeness theorems are obtained for the system of eigenvectors and associated vectors.
Bibliography: 13 titles.
@article{SM_1990_66_1_a4,
author = {B. P. Allakhverdiev and G. Sh. Guseinov},
title = {On the spectral theory of dissipative difference operators of second order},
journal = {Sbornik. Mathematics},
pages = {107--125},
publisher = {mathdoc},
volume = {66},
number = {1},
year = {1990},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1990_66_1_a4/}
}
TY - JOUR AU - B. P. Allakhverdiev AU - G. Sh. Guseinov TI - On the spectral theory of dissipative difference operators of second order JO - Sbornik. Mathematics PY - 1990 SP - 107 EP - 125 VL - 66 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1990_66_1_a4/ LA - en ID - SM_1990_66_1_a4 ER -
B. P. Allakhverdiev; G. Sh. Guseinov. On the spectral theory of dissipative difference operators of second order. Sbornik. Mathematics, Tome 66 (1990) no. 1, pp. 107-125. http://geodesic.mathdoc.fr/item/SM_1990_66_1_a4/