On boundedness of generalized solutions of elliptic differential equations with nonpower nonlinearities
Sbornik. Mathematics, Tome 66 (1990) no. 1, pp. 83-106 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Boundedness of generalized solutions of elliptic differential equations of divergence form with anisotropic nonpower nonlinearities is established. The proof of theorems on the boundedness of solutions is carried out by means of a further development of Moser's iteration technique; a preparatory feature is the derivation of an integral inequality of imbedding-theorem type for functions in anisotropic Sobolev–Orlicz spaces. Bibliography: 28 titles.
@article{SM_1990_66_1_a3,
     author = {A. G. Korolev},
     title = {On boundedness of generalized solutions of elliptic differential equations with nonpower nonlinearities},
     journal = {Sbornik. Mathematics},
     pages = {83--106},
     year = {1990},
     volume = {66},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1990_66_1_a3/}
}
TY  - JOUR
AU  - A. G. Korolev
TI  - On boundedness of generalized solutions of elliptic differential equations with nonpower nonlinearities
JO  - Sbornik. Mathematics
PY  - 1990
SP  - 83
EP  - 106
VL  - 66
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1990_66_1_a3/
LA  - en
ID  - SM_1990_66_1_a3
ER  - 
%0 Journal Article
%A A. G. Korolev
%T On boundedness of generalized solutions of elliptic differential equations with nonpower nonlinearities
%J Sbornik. Mathematics
%D 1990
%P 83-106
%V 66
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1990_66_1_a3/
%G en
%F SM_1990_66_1_a3
A. G. Korolev. On boundedness of generalized solutions of elliptic differential equations with nonpower nonlinearities. Sbornik. Mathematics, Tome 66 (1990) no. 1, pp. 83-106. http://geodesic.mathdoc.fr/item/SM_1990_66_1_a3/

[1] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR | Zbl

[2] Vishik M. I., “O razreshimosti pervoi kraevoi zadachi dlya kvazilineinykh uravnenii s bystrorastuschimi koeffitsientami v klassakh Orlicha”, DAN SSSR, 151:4 (1963), 758–761 | Zbl

[3] Dubinskii Yu. A., “Nekotorye integralnye neravenstva i razreshimost vyrozhdayuschikhsya kvazilineinykh ellipticheskikh sistem differentsialnykh uravnenii”, Matem. sb., 64(106) (1964), 458–480 | MR | Zbl

[4] Dubinskii Yu. A., “Slabaya skhodimost v ellipticheskikh i parabolicheskikh uravneniyakh”, Matem. sb., 1965, 609–642 | MR | Zbl

[5] Klimov V. S., “Teoremy vlozheniya dlya prostranstv Orlicha i ikh prilozheniya k kraevym zadacham”, Sib. matem. zhurn., 13:2 (1972), 334–348 | MR | Zbl

[6] Klimov V. S., “Kraevye zadachi v prostranstvakh Orlicha–Soboleva”, Kachestvennye i priblizhennye metody issledovaniya operatornykh uravnenii, no. 1, Yaroslavl, 1976, 75–93

[7] Klimov V. S., “K teoremam vlozheniya anizotropnykh klassov funktsii”, Matem. sb., 127(169) (1985), 198–208 | MR | Zbl

[8] Kolodii I. M., “Ob ogranichennosti obobschennykh reshenii ellipticheskikh differentsialnykh uravnenii”, Vestn. MGU. Ser. 1. Matematika, mekhanika, 1970, no. 5, 44–52 | MR | Zbl

[9] Korolev A. G., “Ob ogranichennosti obobschennykh reshenii ellipticheskikh differentsialnykh uravnenii”, UMN, 38:2 (1983), 205–206 | MR | Zbl

[10] Krasnoselskii M. A., Rutitskii Ya. B., Vypuklye funktsii i prostranstva Orlicha, Fizmatgiz, M., 1958 | MR

[11] Krein S. G., Petunin Yu. I., Semenov E. M., Interpolyatsiya lineinykh operatorov, Nauka, M., 1978 | MR

[12] Kruzhkov S. N., “Apriornye otsenki dlya obobschennykh reshenii ellipticheskikh i parabolicheskikh uravnenii”, DAN SSSR, 150:4 (1963), 748–751 | Zbl

[13] Kruzhkov S. N., “Apriornye otsenki i nekotorye svoistva reshenii ellipticheskikh i parabolicheskikh uravnenii”, Matem. sb., 65(107) (1964), 522–570

[14] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR

[15] Lu Ven-Tuan, “K teoremam vlozheniya dlya prostranstv funktsii s chastnymi proizvodnymi, summiruemymi s razlichnymi stepenyami”, Vestnik LGU. Matematika.Mekhanika. Astronomiya., 1961, no. 7, 23–34 | MR

[16] Khardi G., Littlvud D., Poiya G., Neravenstva, IL, M., 1948

[17] Donaldson T., “Nonlinear elliptic boundari value problems in Orlicz–Sobolev spaces”, J. Diff. Eq., 10 (1971), 507–528 | DOI | MR

[18] Donaldson T., Trudinger N. S., “Orlicz–Sobolev spaces and imbedding theorems”, J. funct. anal., 1971, no. 8 | MR

[19] Evans L. S., “A new proof of local $C^{1\alpha}$ regularity for solutions of certain degenerate elliptic P. D. E.”, J. Diff. Eq., 45 (1982), 356–373 | DOI | MR | Zbl

[20] De Giorgi E., “Sulla differenziabilita e analiticita delle estremali degli integrali multipli regolari”, Mem. Acad. Sci. Torino., 3 (1957), 25–43 | MR | Zbl

[21] Gossez J., “Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coeff.”, Trans. Amer. Math. Soc., 190 (1974), 163–205 | DOI | MR | Zbl

[22] Morrey C. B., “Second order elliptic equations in several variables and Holder cintinuity”, Math. Z., 72 (1959), 146–164 | DOI | MR | Zbl

[23] Moser J., “A new proof of de Giorgi's theorem conserning the regularity problem for elliptic diff. equations”, Comm. Pure and Appl. Math., 13:3 (1960), 457–468 | DOI | MR | Zbl

[24] Nash J., “Continuity of solutions of parabolic and elliptic equations”, Amer. J. Math., 80:4 (1958), 931–954 | DOI | MR | Zbl

[25] Serrin J., “Local behavior of solutions of quasilinear equations”, Acta Math., 111:3–4 (1964), 247–302 | DOI | MR | Zbl

[26] Simon L., “Interior gradient bounds for nonuniformly elliptic equations”, Indiana Univ. Math. J., 25:9 (1976), 821–855 | DOI | MR | Zbl

[27] Talenti G., “Nonlinear elliptic equations, rearrangements of functions and Orlicz spaces”, Annali di Mat. Pura ed Appl., 120 (1979), 159–184 | DOI | MR | Zbl

[28] Trudinger N. S., “An imbedding theorem for $\overset0H(G,\Omega)$ space”, Studia Math. (PRL), 50:1 (1974), 17–30 | MR | Zbl