Del Pezzo surfaces with log-terminal singularities
Sbornik. Mathematics, Tome 66 (1990) no. 1, pp. 231-248
Voir la notice de l'article provenant de la source Math-Net.Ru
A new method is applied to the study of del Pezzo surfaces $Z$ with log-terminal singularities, taken from the theory of reflection groups in Lobachevsky space. This method yields bounds on the Picard number $\rho(Y)$ of a minimal resolution $Y$ of singularities of $Z$, assuming that the indices or the multiplicities of the singularities of $Z$ are bounded, and under an extra (conjecturally inessential) condition of generality on the singularities of $Z$.
Bibliography: 25 titles.
@article{SM_1990_66_1_a12,
author = {V. V. Nikulin},
title = {Del {Pezzo} surfaces with log-terminal singularities},
journal = {Sbornik. Mathematics},
pages = {231--248},
publisher = {mathdoc},
volume = {66},
number = {1},
year = {1990},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1990_66_1_a12/}
}
V. V. Nikulin. Del Pezzo surfaces with log-terminal singularities. Sbornik. Mathematics, Tome 66 (1990) no. 1, pp. 231-248. http://geodesic.mathdoc.fr/item/SM_1990_66_1_a12/