Del Pezzo surfaces with log-terminal singularities
Sbornik. Mathematics, Tome 66 (1990) no. 1, pp. 231-248

Voir la notice de l'article provenant de la source Math-Net.Ru

A new method is applied to the study of del Pezzo surfaces $Z$ with log-terminal singularities, taken from the theory of reflection groups in Lobachevsky space. This method yields bounds on the Picard number $\rho(Y)$ of a minimal resolution $Y$ of singularities of $Z$, assuming that the indices or the multiplicities of the singularities of $Z$ are bounded, and under an extra (conjecturally inessential) condition of generality on the singularities of $Z$. Bibliography: 25 titles.
@article{SM_1990_66_1_a12,
     author = {V. V. Nikulin},
     title = {Del {Pezzo} surfaces with log-terminal singularities},
     journal = {Sbornik. Mathematics},
     pages = {231--248},
     publisher = {mathdoc},
     volume = {66},
     number = {1},
     year = {1990},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1990_66_1_a12/}
}
TY  - JOUR
AU  - V. V. Nikulin
TI  - Del Pezzo surfaces with log-terminal singularities
JO  - Sbornik. Mathematics
PY  - 1990
SP  - 231
EP  - 248
VL  - 66
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1990_66_1_a12/
LA  - en
ID  - SM_1990_66_1_a12
ER  - 
%0 Journal Article
%A V. V. Nikulin
%T Del Pezzo surfaces with log-terminal singularities
%J Sbornik. Mathematics
%D 1990
%P 231-248
%V 66
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1990_66_1_a12/
%G en
%F SM_1990_66_1_a12
V. V. Nikulin. Del Pezzo surfaces with log-terminal singularities. Sbornik. Mathematics, Tome 66 (1990) no. 1, pp. 231-248. http://geodesic.mathdoc.fr/item/SM_1990_66_1_a12/