Lie superalgebras with bounded degrees of irreducible representations
Sbornik. Mathematics, Tome 66 (1990) no. 1, pp. 199-209
Voir la notice de l'article provenant de la source Math-Net.Ru
A complete description is given of Lie superalgebras over uncountable fields of characteristic zero with all irreducible representations of finite bounded degree. The even component of such an algebra must be Abelian of dimension less than the cardinality of the field, whereas the odd component must contain a submodule of finite codimension with zero multiplication. This condition is also sufficient.
Bibliography: 7 titles.
@article{SM_1990_66_1_a10,
author = {Yu. A. Bahturin},
title = {Lie superalgebras with bounded degrees of irreducible representations},
journal = {Sbornik. Mathematics},
pages = {199--209},
publisher = {mathdoc},
volume = {66},
number = {1},
year = {1990},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1990_66_1_a10/}
}
Yu. A. Bahturin. Lie superalgebras with bounded degrees of irreducible representations. Sbornik. Mathematics, Tome 66 (1990) no. 1, pp. 199-209. http://geodesic.mathdoc.fr/item/SM_1990_66_1_a10/