On infinite curves on the Klein bottle
Sbornik. Mathematics, Tome 66 (1990) no. 1, pp. 41-58 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The author investigates continuous nonselfintersecting (semi-) infinite curves $L=\{z(t);t\geqslant0\}$ on the Klein bottle $\mathbf R^2/\Gamma$, where the group $\Gamma$ of covering transformations is generated by translations through elements of the integral lattice together with the transformation $(x,y)\mapsto(x+\frac12,-y)$. It is proved that if $\widetilde L=\{\widetilde z(t)\}\subset\mathbf R^2$ is a curve which covers $L$ and goes to infinity, then $\widetilde L$ has a horizontal or vertical asymptotic direction $\widetilde l$ at infinity; that is, a ray starting at a fixed point of $\mathbf R^2$ and passing through $\widetilde z(t)$ has a horizontal or vertical limit as $t\to\infty$. In the first case (when $\widetilde l$ is horizontal) the divergence of $\widetilde L$ from $\widetilde l$ is bounded, but in the second case it can be unbounded on one side (but not on both). In passing, a simplified description is given of an example (published earlier in Trudy Mat. Inst. Steklov. 185 (1988), 30–35) demonstrating the existence of the analogous phenomenon of unbounded divergence for the torus. Bibliography: 8 titles.
@article{SM_1990_66_1_a1,
     author = {D. V. Anosov},
     title = {On infinite curves on the {Klein} bottle},
     journal = {Sbornik. Mathematics},
     pages = {41--58},
     year = {1990},
     volume = {66},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1990_66_1_a1/}
}
TY  - JOUR
AU  - D. V. Anosov
TI  - On infinite curves on the Klein bottle
JO  - Sbornik. Mathematics
PY  - 1990
SP  - 41
EP  - 58
VL  - 66
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1990_66_1_a1/
LA  - en
ID  - SM_1990_66_1_a1
ER  - 
%0 Journal Article
%A D. V. Anosov
%T On infinite curves on the Klein bottle
%J Sbornik. Mathematics
%D 1990
%P 41-58
%V 66
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1990_66_1_a1/
%G en
%F SM_1990_66_1_a1
D. V. Anosov. On infinite curves on the Klein bottle. Sbornik. Mathematics, Tome 66 (1990) no. 1, pp. 41-58. http://geodesic.mathdoc.fr/item/SM_1990_66_1_a1/

[1] Markley N. G., “The Poincare–Bendixson theorem for the Klein bottle”, Trans. Amer. Math. Soc., 135 (1969), 159–165 | DOI | MR | Zbl

[2] Anosov D. V., “O povedenii traektorii na ploskosti Evklida ili Lobachevskogo, nakryvayuschikh traektorii potokov na zamknutykh poverkhnostyakh. I, II”, Izv. AN SSSR. Ser. matem., 51 (1987), 16–43 ; 52 (1988), 451–478 | MR | Zbl | Zbl

[3] Anosov D. V., “Kak mogut ukhodit v beskonechnost krivye na universalnoi nakryvayuschei ploskosti, nakryvayuschie nesamoperesekayuschiesya krivye na zamknutoi poverkhnosti”, Statisticheskaya mekhanika i teoriya dinamicheskikh sistem, Tr. MIAN, 191, 1989, 34–44 | MR | Zbl

[4] Aranson S. X., “Traektorii na neorientiruemykh dvumernykh poverkhnostyakh”, Matem. sb., 80(122) (1969), 314–333 | MR | Zbl

[5] Anosov D. V., “O beskonechnykh krivykh na tore i zamknutykh poverkhnostyakh otritsatelnoi eilerovoi kharakteristiki”, Optimizatsiya i differentsialnye igry, Tr. MIAN, 185, 1988, 30–53 | MR

[6] Aranson S. X., Grines V. Z., “O nekotorykh invariantakh dinamicheskikh sistem na dvumernykh mnogoobraziyakh (neobkhodimye i dostatochnye usloviya topologicheskoi ekvivalentnosti tranzitivnykh sistem)”, Matem. sb., 90(132) (1973), 372–402 | MR | Zbl

[7] Aranson S. X., Grines V. Z., “O rekurrentnykh geodezicheskikh bez samoperesechenii na dvumernykh mnogoobraziyakh otritsatelnoi krivizny”, Differentsialnye i integralnye uravneniya, Izd-vo Gork. Un-ta, Gorkii, 1982, 21–24 | MR

[8] Aranson S. V., Grines V. Z., “Dynamical systems with minimal entropy on two-dimensional manifolds”, Selecta Mathematica Sovietica, 2:2 (1982), 123–158 | MR | Zbl