Commutative semigroups with lattice of subsemigroups satisfies a nontrivial identity
Sbornik. Mathematics, Tome 65 (1990) no. 2, pp. 465-485 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A description of commutative semigroups whose lattice of subsemigroups satisfies a nontrivial identity is obtained. In particular, an affirmative answer is given to a question of L. N. Shevrin on periodicity of an arbitrary semigroup whose lattice of subsemigroups satisfies a nontrivial identity. As a corollary of the technique developed herein a number of lattice-theoretic facts (known, as well as new) are also obtained. Figures: 1. Bibliography: 11 titles.
@article{SM_1990_65_2_a9,
     author = {V. B. Repnitskii and S. I. Katsman},
     title = {Commutative semigroups with lattice of subsemigroups satisfies a nontrivial identity},
     journal = {Sbornik. Mathematics},
     pages = {465--485},
     year = {1990},
     volume = {65},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1990_65_2_a9/}
}
TY  - JOUR
AU  - V. B. Repnitskii
AU  - S. I. Katsman
TI  - Commutative semigroups with lattice of subsemigroups satisfies a nontrivial identity
JO  - Sbornik. Mathematics
PY  - 1990
SP  - 465
EP  - 485
VL  - 65
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1990_65_2_a9/
LA  - en
ID  - SM_1990_65_2_a9
ER  - 
%0 Journal Article
%A V. B. Repnitskii
%A S. I. Katsman
%T Commutative semigroups with lattice of subsemigroups satisfies a nontrivial identity
%J Sbornik. Mathematics
%D 1990
%P 465-485
%V 65
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1990_65_2_a9/
%G en
%F SM_1990_65_2_a9
V. B. Repnitskii; S. I. Katsman. Commutative semigroups with lattice of subsemigroups satisfies a nontrivial identity. Sbornik. Mathematics, Tome 65 (1990) no. 2, pp. 465-485. http://geodesic.mathdoc.fr/item/SM_1990_65_2_a9/

[1] Shevrin L. N., “Polugruppy s nekotorymi tipami struktur podpolugrupp”, DAN SSSR, 138:4 (1961), 796–798 | Zbl

[2] Shevrin L. N., “Polugruppy s dedekindovoi strukturoi podpolugrupp”, DAN SSSR, 148:2 (1963), 292–295 | Zbl

[3] Ego M., “Structure des demi-groupes dont le treillis des sous-demi-groupes satisfait a certaines conditions”, Bull. Soc. Math. France, 91 (1963), 137–201 | MR | Zbl

[4] Sverdlovskaya tetrad. Nereshennye zadachi teorii polugrupp, Ural. gos. un-t, Sverdlovsk, 1979

[5] Day A., “Idempotents in the grouppoid of all SP classes of lattices”, Can. Math. Bull., 21:4 (1978), 499–501 | MR | Zbl

[6] Lender V. B., “Ob ogranichennykh predmnogoobraziyakh struktur”, Issledovaniya po sovremennoi algebre, Sverdlovsk, 1983, 87–94 | MR | Zbl

[7] Klifford A., Preston G., Algebraicheskaya teoriya polugrupp, T. 1–2, Mir, M., 1972 | Zbl

[8] Birkgof G., Teoriya reshetok, Nauka, M., 1983 | MR

[9] Lyapin E. S., Polugruppy, Fizmatgiz, M., 1960 | MR

[10] Skornyakov L. A., Elementy teorii struktur, Nauka, M., 1982 | MR

[11] Salii V. N., Lektsii po teorii reshetok, Saratov gos. un-t, Saratov, 1970