The umbral calculus on multivalued formal groups, and Adams projections in $K$-theory
Sbornik. Mathematics, Tome 65 (1990) no. 2, pp. 423-437 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{SM_1990_65_2_a7,
     author = {A. N. Kholodov},
     title = {The umbral calculus on multivalued formal groups, and {Adams} projections in $K$-theory},
     journal = {Sbornik. Mathematics},
     pages = {423--437},
     year = {1990},
     volume = {65},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1990_65_2_a7/}
}
TY  - JOUR
AU  - A. N. Kholodov
TI  - The umbral calculus on multivalued formal groups, and Adams projections in $K$-theory
JO  - Sbornik. Mathematics
PY  - 1990
SP  - 423
EP  - 437
VL  - 65
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1990_65_2_a7/
LA  - en
ID  - SM_1990_65_2_a7
ER  - 
%0 Journal Article
%A A. N. Kholodov
%T The umbral calculus on multivalued formal groups, and Adams projections in $K$-theory
%J Sbornik. Mathematics
%D 1990
%P 423-437
%V 65
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1990_65_2_a7/
%G en
%F SM_1990_65_2_a7
A. N. Kholodov. The umbral calculus on multivalued formal groups, and Adams projections in $K$-theory. Sbornik. Mathematics, Tome 65 (1990) no. 2, pp. 423-437. http://geodesic.mathdoc.fr/item/SM_1990_65_2_a7/

[1] Adams J. F., “Lectures on generalised cohomology”, Lect. Notes in Math., 1969, no. 99, 1–138 | DOI | MR | Zbl

[2] Adams J. F., Harris A. S., Switzer R. M., “Hopf algebras of cooperations for real and complex K-theory”, Proc. London Math. Soc., 23 (1971), 385–408 | DOI | MR | Zbl

[3] Bukhshtaber V. M., “Kharakteristicheskie klassy v kobordizmakh i topologicheskie prilozheniya teorii odnoznachnykh i dvuznachnykh formalnykh grupp”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 10, VINITI, M., 1978, 5–178 | MR

[4] Bukhshtaber V. M., Novikov S. P., “Formalnye gruppy, stepennye sistemy i operatory Adamsa”, Matem. sb., 84(126) (1971), 81–118 | MR | Zbl

[5] Bukhshtaber V. M., Kholodov A. N., “Topologicheskie konstruktsii, svyazannye s mnogoznachnymi formalnymi gruppami”, Izv. AN SSSR. Ser. matem., 46 (1982), 3–27 | MR | Zbl

[6] Clarke F., “Self maps of $BU$”, Math. Proc. Cambr. Phil. Soc., 89:3 (1981), 491–500 | DOI | MR | Zbl

[7] Levitan B. M., Teoriya operatorov obobschennogo sdviga, Nauka, M., 1973 | MR | Zbl

[8] Mamedov G. R., “Ob otobrazheniyakh klassifitsiruyuschikh prostranstv”, UMN, 41:3 (1986), 191–192 | MR | Zbl

[9] Ray N., “Extension of umbral calculus: penumbral coalgebras and generalised Bernoulli numbers”, Adv. Math., 61 (1986), 49–100 | DOI | MR | Zbl

[10] Riordan Dzh., Kombinatornye tozhdestva, Nauka, M., 1982 | MR | Zbl

[11] Roman S., The umbral calculus, Acad. Press., N.-Y., 1984 | MR

[12] Roman S., Rota G. -C., “The umbral calculus”, Adv. Math., 27 (1978), 95–188 | DOI | MR | Zbl

[13] Svittser R. M., Algebraicheskaya topologiya – gomotopii i gomologii, Nauka, M., 1985 | MR

[14] Kholodov A. N., “Algebraicheskaya teoriya mnogoznachnykh formalnykh grupp”, Matem. sb., 114(156) (1981), 299–321 | MR | Zbl

[15] Mullin R., Rota G. -C., “On the foundations of combinatorial theory III: Theory of binomial enumerations”, Graph theory and its applications, Acad. Press, N.-Y., 1970, 167–213 | MR

[16] Ray N., “Symbolic calculus: a 19th century approach to $MU$ and $BP$”, Homotopy theory, Cambridge Univ. Press, Cambridge, 1987, 195–237 | MR

[17] Ray N., Stirling and Bernoulli numbers for complex oriented homology theories, Preprint. Manchester Univ., 1987