Lyapunov exponents as functions of a parameter
Sbornik. Mathematics, Tome 65 (1990) no. 2, pp. 369-384 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The author proves the typical nature, in the sense of Baire category, of the upper semicontinuity of the Lyapunov exponents of a family of endomorphisms of a metrized vector bundle, considered as a function of a parameter on which a point of the base of this bundle continuously depends. It is proved that the Lyapunov exponents, as functions of this parameter, belong to the second Baire class. An application of these abstract theorems to the Lyapunov exponents of nonlinear systems of differential equations continuously depending on a parameter is given. Bibliography: 14 titles.
@article{SM_1990_65_2_a5,
     author = {V. M. Millionshchikov},
     title = {Lyapunov exponents as functions of a parameter},
     journal = {Sbornik. Mathematics},
     pages = {369--384},
     year = {1990},
     volume = {65},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1990_65_2_a5/}
}
TY  - JOUR
AU  - V. M. Millionshchikov
TI  - Lyapunov exponents as functions of a parameter
JO  - Sbornik. Mathematics
PY  - 1990
SP  - 369
EP  - 384
VL  - 65
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1990_65_2_a5/
LA  - en
ID  - SM_1990_65_2_a5
ER  - 
%0 Journal Article
%A V. M. Millionshchikov
%T Lyapunov exponents as functions of a parameter
%J Sbornik. Mathematics
%D 1990
%P 369-384
%V 65
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1990_65_2_a5/
%G en
%F SM_1990_65_2_a5
V. M. Millionshchikov. Lyapunov exponents as functions of a parameter. Sbornik. Mathematics, Tome 65 (1990) no. 2, pp. 369-384. http://geodesic.mathdoc.fr/item/SM_1990_65_2_a5/

[1] Nemytskii V. V., Stepanov V. V., Kachestvennaya teoriya differentsialnykh uravnenii, GTTI, M., 1949

[2] Lyapunov A. M., Sobr. soch., T. 2, Izd-vo AN SSSR, M.; L., 1956

[3] Bylov B. F., Vinograd R. E., Grobman D. M., Nemytskii V. V., Teoriya pokazatelei Lyapunova i ee prilozheniya k voprosam ustoichivosti, Nauka, M., 1966 | MR | Zbl

[4] Izobov N. A., “Lineinye sistemy obyknovennykh differentsialnykh uravnenie”, Itogi nauki i tekhniki. Matematicheskii analiz, 12, VINITI, M., 1974, 71–146 | MR

[5] Perron O., “Über Stabilität und asymptotisches Verhalten der Integrale von Differentialgleichungssystemen”, Math. Zeitschrift, 29 (1928), 129–160 | DOI | MR | Zbl

[6] Bellman R., Teoriya ustoichivosti reshenii differentsialnykh uravnenii, IL, M., 1954

[7] Ber R., Teoriya razryvnykh funktsii, GTTI, M.; L., 1932

[8] Khausdorf F., Teoriya mnozhestv, ONTI, M.; L., 1937

[9] Okstobi Dzh., Mera i kategoriya, Mir, M., 1974

[10] Puankare A., Izbrannye trudy, T. 2, Nauka, M., 1972

[11] Khyuzmoller D., Rassloennye prostranstva, Mir, M., 1970

[12] Millionschikov V. M., “Normalnye bazisy semeistva endomorfizmov metrizovannogo vektornogo rassloeniya”, Matem. zametki, 38:5 (1985), 691–708 | MR | Zbl

[13] Millionschikov V. M., “Pokazateli Lyapunova semeistva endomorfizmov metrizovannogo vektornogo rassloeniya”, Matem. zametki, 38:1 (1985), 92–109 | Zbl

[14] Millionschikov V. M., “Formuly dlya pokazatelei Lyapunova semeistva endomorfizmov metrizovannogo vektornogo rassloeniya”, Matem. zametki, 38:1 (1986), 29–51 | MR